
ar
X

iv
:a

st
ro

-p
h/

99
08

30
4 

v1
   

27
 A

ug
 1

99
9

Clustering of the Diffuse Infrared Light from the COBE DIRBE

maps. III. Power spectrum analysis and excess isotropic

component of fluctuations.

A. Kashlinsky1,3, J. C. Mather2, S. Odenwald4

1NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

2Code 685, NASA Goddard Space Flight Center, Greenbelt, MD 20771

3Raytheon STX, Code 685,

NASA Goddard Space Flight Center, Greenbelt, MD 20771

4Raytheon STX, Code 630,

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Received ; accepted



– 2 –

ABSTRACT

The cosmic infrared background (CIB) radiation is the cosmic repository for energy

release throughout the history of the universe. The spatial fluctuations of the CIB

resulting from galaxy clustering are expected to be at least a few percent on scales

of a degree, depending on the luminosity and clustering history of the early universe.

Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100

µm we attempt to measure the CIB fluctuations. In the near-IR, foreground emission

is dominated by small scale structure due to stars in the Galaxy. There we find a

strong correlation between the amplitude of the fluctuations and Galactic latitude after

removing bright foreground stars. Using data outside the Galactic plane (|b| > 20
◦

) and

away from the center (90◦ < l < 270◦) we extrapolate the amplitude of the fluctuations

to cosec|b| = 0. We find a positive intercept of δFrms = 15.5+3.7
−7.0, 5.9

+1.6
−3.7, 2.4

+0.5
−0.9, 2.0

+0.25
−0.5

nWm−2sr−1 at 1.25, 2.2, 3.5 and 4.9 µm respectively, where the errors are the range of

92% confidence limits. For color subtracted maps between band 1 and 2 we find the

isotropic part of the fluctuations at 7.6+1.2
−2.4 nWm−2sr−1 . Based on detailed numerical

and analytic models, this residual is not likely to originate from the Galaxy, our

clipping algorithm, or instrumental noise. We demonstrate that the residuals from the

fit used in the extrapolation are distributed isotropically and suggest that this extra

variance may result from structure in the CIB. We also obtain a positive intercept from

a linear combination of maps at 1.25 and 2.2 µm. For 2
◦

< θ < 15
◦

, a power-spectrum

analysis yields firm upper limits of (θ/5
◦

) × δFrms(θ) < 6, 2.5, 0.8, 0.5 nWm−2sr−1 at

1.25, 2.2, 3.5 and 4.9 µm respectively. From 10 - 100 µm, the dominant foregrounds

are emission by dust in the Solar system and the Galaxy. There the upper limits on

the CIB fluctuations are below 1 nWm−2sr−1 and are lowest (≤ 0.5 nWm−2sr−1 ) at

25 µm.

Subject headings: Cosmology - Cosmic Background Radiation - Galaxies: Clustering -

Galaxies: Evolution
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1. Introduction

Diffuse backgrounds and their structure contain important information about the history of

the early Universe, when discrete objects either do not exist or are not accessible to telescopic

studies. The formation and early evolution of galaxies should have generated radiation redshifted

into the infrared bands (e.g. Partridge and Peebles 1967; Bond et al. 1986). This cosmic infrared

background (CIB) may come from the entire history of the Universe between the epoch of last

scattering, mapped by the microwave background, and the present day.

The COBE Diffuse InfraRed Background Experiment (DIRBE) (Boggess et al. 1992;

Silverberg et al. 1993; Weiland et al., DIRBE Explanatory Supplement, 1998) mapped the entire

sky with 0.3◦ pixels and 0.7◦ resolution in ten bands between 1.25 and 240 µm. The results have

been published (Hauser et al. 1998; Kelsall et al. 1998; Arendt et al. 1998; Dwek et al., 1998),

based on a zodiacal light model believed accurate within a few percent (Kelsall et al. 1998). Their

Galactic dust emission model (Arendt et al. 1998) is derived from fits to the DIRBE data and

comparison to hydrogen maps, and accounts for the variation of dust temperature. Their model

for Galactic starlight is derived from external star count models, with no free parameters. The

residuals from the modeling were not significantly above the uncertainties except at 140 and

240 µm. The FIRAS instrument on COBE gave similar answers, (Fixsen, Mather, Bennett, and

Shafer, 1998), using three different methods for removing the foregrounds. The agreement is

significant because the instruments were calibrated independently. The measured values of the

far-IR background are comparable to the total observed Galactic emission at visible and near-IR

wavelengths, and imply that about half of the luminosity of the universe has been obscured by

dust and converted into far-IR radiation. Some distant galaxies might be more reddened or

obscured by dust than otherwise expected, and the CIB and its fluctuations might be brighter

than predicted from visible band galaxy counts.

In this paper we continue our search for a CIB by trying to detect its spatial structure in

the DIRBE data. The method is similar to that first suggested by Gunn and later applied in

the visible (Shectman 1973, 1974) and UV (Martin and Bowyer 1989). Recently, Vogeley (1998)
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applied the method to the Hubble Deep Field constraining the amount of the visible cosmic

background, concluding that there is very little visible cosmic background from unresolved sources.

They considered arcsecond scales where fluctuations are dominated by random parts of individual

galaxy (Vogeley 1998) or cluster (Shectman 1974) profiles. We apply the method to degree scales

where the dominant contribution comes from galaxy clustering. Our previous results are described

by Kashlinsky, Mather, Odenwald and Hauser (1996a; Paper I) and Kashlinsky, Mather and

Odenwald (1996b; Paper II).

If we assume that the galaxies producing the CIB are clustered, the amplitude of the resulting

CIB 2-point correlation function, C(θ), depends on the rate of the flux emission, dF/dz, and

on the galaxy 2-point correlation function, ξ(r; z). If the latter is known on the linear scales

subtended by a given angle, measurements or upper limits on C(θ) can constrain the levels of

the CIB emitted by clustered material. Measuring or limiting the structure of the CIB can be

especially valuable in the mid- to far-IR bands where the foreground emission is very bright, but

smooth.

The plan of the paper is as follows: In Sec. 2 we define the quantities used and provide

mathematical background. We show that for the measured galaxy correlation function we expect

fluctuations of about 5 to 10% in the CIB flux on 0.5◦ scales, almost independently of the

particular mechanism of the CIB production. We discuss our search for the CIB structure in the

DIRBE data between 1 and 100 µm. The last two bands of DIRBE - 140 and 240 µm - are not

useful for this because of the large instrument noise there. Section 3 deals with the beam profile

and the spatial window function for power spectrum analysis. Section 4 discusses the data for

λ ≤ 5 µm, where the foregrounds are dominated by stellar emission from the Galaxy. We find

a significant trend in the amplitude of the measured fluctuations with Galactic latitude. When

our star removal algorithm is applied to simulated data, we recover the measured slope of the

correlation with Galactic latitude, and extrapolation of the simulated fluctuations to cosec|b| = 0

leads to a zero intercept. We derive a formula relating the measured fluctuations to star counts

and show that for a plane-parallel Galaxy there should be a simple relationship between the b
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dependence of the fluctuations and the slope of the star counts function at the Galactic pole.

Then we show that for 90◦ < l < 270◦ and |b| > 20◦ the measured structure of the Galaxy fits the

plane-parallel model. Furthermore, the scatter in the C(0) - cosec|b| plot is low enough to allow

an extrapolation to cosec|b| = 0, with positive intercepts in all four near-IR bands. We perform

a power spectrum analysis but most of the measured structure is due to fluctuating star counts.

If the star removal algorithm removes stars fainter than 5 times the confusion noise limit, there

are too few pixels left to calculate a power spectrum. Nevertheless, limits are sufficiently low to

be of interest in testing theoretical predictions. We test our methods with numerical and analytic

models of the Galaxy and possible CIB contributions and find good agreement with the data.

Results from the mid- to far-IR bands, where foreground emission structure is dominated by the

large scale gradients from dust emission in the Solar System and the Galaxy, are presented in Sec.

5. The upper limits on these fluctuations are < 1 nWm−2sr−1 , depending on wavelength, and

provide much stronger tests of the predictions of galaxy counts than do direct measurements from

inside the zodiacal dust cloud. We summarize our results in Sec. 6.

2. Theoretical preliminaries

Here we provide a general mathematical basis without specific cosmological and galaxy

evolution models. We will use the data to constrain the CIB properties in a model-independent

way, and then to constrain models of galaxy evolution. We extend our previous work (Paper I,I;

Jimenez & Kashlinsky 1999) to show the power spectrum of the fluctuations and to estimate the

typical amplitude of the fluctuations in a model-independent way.

We start with definitions. The surface brightness in the CIB per unit wavelength will be

denoted as Iλ, per unit frequency as Iν , and per logarithmic wavelength interval F = λIλ = νIν ,

and we call them all “flux.” The fluctuation in the CIB flux is then δF (x) = F (x) − 〈F 〉, where

x is the two dimensional coordinate on the sky and 〈...〉 denotes ensemble averaging. We also use

the two-dimensional Fourier transform, δF (θ) = (2π)−2
∫

δFq exp(−iq · θ)d2q.
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If δF (x) field is a random variable, then it can be described by the moments of its probability

distribution function. The first non-trivial moment is the projected 2-dimensional correlation

function C(θ) = 〈δF (x + θ)δF (x)〉. The 2-dimensional power spectrum is P2(q) ≡ 〈|δFq |2〉, where

the average is performed over all phases. The correlation function and the power spectrum are a

pair of 2-dimensional Fourier transforms and for isotropically distributed signal are related by

C(θ) =
1

2π

∫

∞

0
P2(q)J0(qθ)qdq, (1)

P2(q) = 2π

∫

∞

0
C(θ)J0(qθ)θdθ, (2)

where Jn(x) is the n-th order cylindrical Bessel function. If the phases are random, then the

distribution of the flux field is Gaussian and the correlation function, or its Fourier transform the

power spectrum, uniquely describe its statistics. In measurements with a finite beam radius ϑ

the intrinsic power spectrum is multiplied by the window function W of the instrument. Another

useful quantity is the mean square fluctuation within a finite beam, or zero-lag correlation signal,

which is related to the power spectrum by

〈(δF )2〉ϑ =
1

2π

∫

∞

0
P2(q)WTH(qϑ)qdq

∼ 1

2π
q2P2(q)|q∼π/2ϑ. (3)

For a top-hat beam the window function is WTH = [2J1(x)/x]2 = 0.5 at x ' π/2 where x = qϑ,

and hence the values of q−1 correspond to fluctuations on angular scales of diameter ∼ π/q.

The CIB flux and its structure are measured in projection on the celestial sphere and reflect

both the 3-dimensional clustering pattern of the galaxy distribution and the rate of emission at

redshift z. We introduce the 3-dimensional two-point correlation function of galaxy clustering,

ξ(r), and its 3-dimensional power spectrum, P3(k). These are related via 3-dimensional Fourier

transforms, and assuming isotropy are related by

ξ(r) =
1

2π2

∫

∞

0
P3(k)j0(kr)k2dk. (4)

The projected CIB correlation function is related to the underlying two-point correlation
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function of the galaxy distribution and the rate of the CIB flux emission via the Limber equation

C(θ) =

∫

z1

∫

z2

dF

dz1

dF

dz2
ξ(r12; z)dz1dz2, (5)

where r12 is the proper length subtended by the angle θ and redshifts z1, z2. In the limit of small

angles, θ � 1, the Limber equation becomes (e.g. Peebles 1980)

C(θ) =

∫

∞

0
dz

(

dF

dz

)2 ∫

∞

−∞

ξ(r12; z)du. (6)

For Robertson-Walker metrics the proper separation is given by

r2
12 = (

dx/dz√
1 − kx2

u)2 +
x2(z)θ2

(1 + z)2
(7)

= c2(
dt

dz
)2u2 + d2

A(z)θ2. (8)

Here dA(z) is the angular diameter distance, x(z) ≡ dA(z)/(1 + z), u is the integration variable

and t is the cosmic time.

The comoving volume occupied by a unit solid angle in the redshift interval dz is

dV/dz = (1 + z)x2(z)cdt/dz, and the power received per unit wavelength and collecting

area in band λ from each galaxy with absolute bolometric luminosity L at redshift z is

[L/(4πx2(1 + z)3)]fλ( λ
1+z ; z). Here fλdλ is the fraction of the total light emitted in the wavelength

interval [λ;λ + dλ] and the extra factor of (1 + z) in the denominator accounts for the fact that

the flux received in band λ comes from a redshifted galaxy. The contribution to the total CIB flux

from the redshift interval dz is given by

dF

dz
=

RH

4π

1

(1 + z)2
d(H0t)

dz

∑

i

Li(z)[λfλ,i(
λ

1 + z
; z)], (9)

where the sum is taken over all galaxy populations contributing flux in the observer rest-frame

band at λ, and fλ characterizes the spectral energy distribution (SED) of galaxy population i.

Here RH = cH−1
0 and L(z) =

∫

Φ(L; z)LdL is the comoving luminosity density from galaxies with

the luminosity function Φ(L; z) at epoch z.

It is illustrative to study the redshift dependence of the flux rate production, Eq. (9). At

small redshifts the factor (1 + z)−2dt/dz varies little with z, and the rate of flux production is
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governed by the comoving bolometric luminosity density L(z) and the SED of the galaxy emission

fλ. If the luminosity evolution at these redshifts is small, the rate of flux production is governed by

the SED shape. If fλ(λ) increases towards shorter wavelengths then dF/dz increases with z. For

λfλ = const, and no luminosity evolution, the rate is roughly constant with small z. In addition,

there is observational evidence for an increase of L(z) out to z ' 1 in the galaxy rest-frame UV

to near-IR (1 µm) bands (Lilly et al. 1996). At sufficiently high redshifts, the evolution in Eq. (9)

would be offset by the factor (1 + z)−2dt/dz, so that the rate of production would be cut off at

sufficiently large z. This factor is responsible for resolving Olbers’ paradox even for a flat SED.

The SED for rest-frame λ < 10µm is dominated by stellar emission, with a peak at visible

wavelengths and a decrease for λ > 0.7 µm. Consequently, most of the predicted J band CIB

comes from redshifts z ∼ 0.3 − 1, which shifts the visible emission of normal stellar populations

into the J band; cf. Yoshii and Takahara (1988). In the M band at 5 µm, most of the predicted

CIB comes from z > 1 − 2. At λ > 10 µm, the emission is dominated by galactic dust and the

situation is reversed, so fλ increases with wavelength roughly as λα with α ∼ 1.5. Hence, the dusty

star-burst galaxies observed by IRAS at low redshifts should make the dominant contribution to

the 10 µm CIB. In the far-IR, the measured CIB found by DIRBE can have large contributions

from high redshifts.

Measurements of the correlation function C(θ) = 〈δF (x + θ)δF (x)〉 have an important

advantage over direct determinations of the CIB spatial power spectrum, because they are

immune to the discontinuities in the maps created by point source removal. (Because, in

practice, C(θ) is evaluated from masked data, the uncertainties of the C(θ) points are themselves

correlated.) However, interpreting C(θ) in terms of dF/dz and ξ(r) can be cumbersome because

the right-hand-side of (6) contains a double integral and the 3-dimensional correlation function is

not always positive. By definition, ξ(r) must be negative on large scales so that
∫

∞

0 ξ(r)r2dr = 0.

A simpler method is to work with the Fourier transform of the correlation function, P2(q),

which contains the same information as C(θ) and is easier to interpret. As for C(θ) the effects

of the mask will produce correlations of the power spectrum points with each other. Also, the
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measured power spectrum is the convolution of the Fourier transform of the mask with the true

power. Although the uncertainties in C(θ) and P2(q) can be evaluated from theory, we evaluated

them from the data by comparing multiple measurements.

The Limber equation (6) can be rewritten directly in terms of the power spectra, substituting

Eq. (4) into (6) and using
∫

∞

−∞
j0(

√

x2 + y2)dy = πJ0(x) to obtain

C(θ) =
1

2π

∫

∞

0
dz

(

dF

dz

)2 1

cdt/dz
∫

∞

0
P3(k; z)J0(kdAθ)k dk. (10)

Substituting this expression into (2) and using the orthogonality relations for the Bessel functions,
∫

∞

0 J0(αθ)J0(βθ)θdθ = α−1δD(α − β), leads to

P2(q) =

∫

∞

0

(

dF

dz

)2 (1 + z)2

c dt
dz x2(z)

P3(qd
−1
A (z); z)dz. (11)

Equation(11) involves only one integration and the kernel is always positive. Hence it may be

easier to derive cosmologically interesting quantities such as F and ξ(r) or P3(k). Determining

P2(q) directly from the data is difficult owing to the masking created by point source removal, and

it seems best to compute C(θ) and then derive P2(q) from it.

Figure 1a plots the argument, q(1 + z)/x(z), of P3 in the right-hand-side of Eq. (11) for the

largest wavenumbers (smallest scales) probed by DIRBE at various redshifts z. The dotted line

corresponds to Ω = 1,ΩΛ = 0; the solid to Ω = 0.1,ΩΛ = 0 and the dashes to Ω = 0.1,ΩΛ = 0.9,

where ΩΛ = 3H2
0 (1 − Ω) denotes the contribution of the cosmological constant. For redshifts

contributing most of the CIB flux (z >0.1-0.2, cf. Paper I), the DIRBE instrument probes scales

which are in the quasi-linear or linear regime, and which thus can be approximated as having

evolved at the same rate with time. Thus for DIRBE scales, one can write P3(k; z) ' P3(k; 0)Ψ2(z),

(e.g. Peebles 1980), where Ψ2(z) accounts for the evolution of the clustering and is normalized to

Ψ2(0) = 1. Then Eq. (11) can be rewritten in a more compact way:

q2P2(q) =

∫

∞

0

(

dF

dz

)2 Ψ2(z)

H0
dt
dz

∆2(
q

dA(z)
)dz, (12)



– 10 –

with

H0
dt

dz
=

1

(1 + z)2
√

1 + Ωz + ΩΛ[(1 + z)−2 − 1]
. (13)

The left-hand-side of (12) is the same order of magnitude as the mean square fluctuation (3), and

we have defined

∆2(k) ≡ R−1
H k2P3(k; 0). (14)

The quantity ∆(k) is roughly the fluctuation over the line-of-sight cylinder of length RH and

diameter k−1. For relevant scales and spectra of density fluctuations, ∆(k) increases with k.

Hence, the CIB fluctuation on a scale of k−1 is ∼
√

k2P2(k) ∼ F∆(k/RH).

The present day power spectrum of galaxy clustering has been measured on scales

corresponding to at least the smallest angular scales probed by DIRBE. The most accurate

measurement comes from the APM survey data on the projected angular correlation function

(Maddox et al. 1990). Baugh and Efstathiou (1993) deprojected the APM data to obtain the

underlying power spectrum of galaxy clustering, P3(k). Kashlinsky (1998) used the current large

scale data, and the abundance of objects at high redshifts, to reconstruct the pregalactic density

field over six orders of magnitude in mass. His result requires significant fluctuation power on

small scales, an early epoch of galaxy formation, and high levels of the CIB and its fluctuations.

Fig. 1b plots the data from the Baugh and Efstathiou (1993) deprojection. On small scales (large

k), ∆2(k) ∝ k0.7, so the integrand in Eq. (12) behaves as ∝ z−0.7 with an integrable singularity

at z → 0. While a non-negligible part of the clustering part of the CIB fluctuations comes from

nearby galaxies, much of it arises from galaxies at z > 1.

In Papers I and II we estimated ∼ 5-10% CIB fluctuations on a scale of 0.5◦. One can also

see this in a more intuitive way from Eq. (12). Fig. 1a plots q(1 + z)/x(z), the largest wavenumber

that enters on the right hand side of (12), for q−1 = 0.5◦. In the Friedman-Robertson-Walker

Universe, q/dA(z) reaches a minimum at z ∼ 1 − 3, and its value at the minimum depends weakly

on cosmological parameters. Thus (12) can be rewritten as an inequality:

q2P2(q) ≥ ∆2
(

min[
q

dA(z)
]

)
∫

∞

0

(

dF

dz

)2 Ψ2(z)

H0
dt
dz

dz. (15)
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On linear and quasi-linear scales over the range of redshifts that contribute most to the CIB, the

quantity Ψ2(z)/H0dt
dz depends weakly on z (e.g. on linear scales Ψ2 = (1 + z)−2 if Ω = 1). The

integral is of the same order of magnitude as F 2 because the term dF/dz is a peaked function

with a full width at half maximum of order unity. Hence, the relative fluctuation in the CIB is

∼ ∆(min[ q
dA(z) ]). Fig. 1b plots ∆(k) vs. k using the power spectrum of APM galaxies from Baugh

& Efstathiou (1993); it is an increasing function of k. At the wavenumber of the minimum in Fig.

1a, the CIB fluctuation can be as large as ∼ (5-10)%. In models where the bulk of the CIB comes

from higher redshifts, this number may be somewhat smaller. Because this method measures a

two-point process, the results constrain a measure related to the mean square of the CIB emission

rate, i.e. ∼
∫

(

dF
dz

)2
dz.

Many models have calculated the expected CIB over the 1 - 100 µm range (e.g. Partridge

and Peebles 1967; Stecker et al. 1977; Bond et al. 1986; Fall et al. 1996; Wang 1991; Beichman

and Helou 1991; Franceschini et al. 1991; Cole et al. 1992; Malkan and Stecker, 1997; Jimenez

and Kashlinsky 1999; Dwek et al. 1998). The models are normalized to galaxy counts and predict

a typical flux of F ∼ 10 nWm−2sr−1 . Deep K band counts of galaxies (e.g. Cowie et al. 1994;

Djorgovski et al. 1995) or at 12 - 100 µm (Hacking and Soifer 1991) suggest minimal fluxes of at

least a few nWm−2sr−1 . Therefore the CIB fluctuations on 0.5◦ scales may be ∼ 1 nWm−2sr−1 .

The APM measurements of the galaxy correlation function in the blue band might not

apply to the infrared. However, the r band Palomar survey (Picard 1991), and the R-band Las

Campanas survey (Shectman et al. 1996, Lin et al. 1996) give results identical to the APM

survey. On the other hand, for IRAS galaxies on small (non-linear) scales the correlation function

has a lower coherence length. Saunders et al. (1992) show that on small scales IRAS galaxies

at 60µm cluster with ξIRAS = (r/r∗,IRAS)−1−γIRAS where r∗,IRAS ' 4h−1Mpc and γIRAS ' 0.6,

as opposed to r∗ = 5.5h−1Mpc and γ ' 0.7 for the APM galaxies (Moore et al. 1994). The

slight difference could be due a tendency of the IRAS dusty star-burst galaxies to avoid the

central regions of rich clusters of galaxies. However, on larger (linear) scales where the galaxy

clustering pattern presumably traces the pregalactic density field, IRAS galaxies as measured by
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the QDOT counts-in-cells analysis (Saunders et al. 1990) are consistent with the APM galaxies

power spectrum. These linear to quasi-linear scales are relevant for the DIRBE beam size, so we

use the APM numbers for all infrared wavelengths. In surveys with smaller beams, the differences

will be more pronounced, but the differences between the IRAS and APM correlation functions do

not lead to appreciably smaller mid- to far-IR CIB fluctuations.

In addition to the clustering term, there is a white-noise component in the correlation signal

due to individual galaxies (e.g. Peebles 1980). Its amplitude at zero lag is

CWN(0) = θ−2
beam

RH

16π2

∫

∫

Φ(L; z)L2dL

x2(z)(1 + z)8
H0dt

dz
[

λfλ(
λ

1 + z
; z)

]2

dz. (16)

Like white noise from discrete stars, the white noise from galaxies is dominated by the nearest

objects, unlike the clustered component (6), because of the presence of x2(z) in the denominator of

the integrand in (16). Because the galaxies are almost undetectable against the star fluctuations,

the galaxy white noise is also negligible.

3. DIRBE data and beam profile

The COBE DIRBE instrument provided an all-sky 41 week survey with a ten-band photometer

(Boggess et al. 1992). The DIRBE bolometer measurements at 140 and 240 µm are too noisy for

our purposes. The remaining eight bands are centered on wavelengths 1.25, 2.2, 3.5, 4.9, 12, 25, 60

and 100 µm, and are labeled Bands 1-8 respectively. We obtained the 41 weekly-averaged DIRBE

maps from the National Space Science Data Center (NSSDC), subtracted the zodiacal light model

developed by the DIRBE team (Kelsall et al. 1998; Weiland et al, 1998, DIRBE Explanatory

Supplement), and averaged the weeks together.

The maps are stored in a cube format and pixelized into 6 faces of 2562 approximately

square pixels ∼ 0.3◦ on a side. For a finite beam the ideal map is convolved with the beam

window function. For a circular top-hat beam similar to DIRBE’s square top hat, the Fourier



– 13 –

transform of the window function is W (x) = [2J1(x)/x]2, where J1(x) is the first-order cylindrical

Bessel function. The measured power spectrum is then the product of the underlying power

spectrum and the beam window function, i.e. Pmeasured(q) = P2(q)W (qϑ) where ϑ reflects the

beam size. On large scales (small q), W (x) ∼ 1. Throughout the rest of the paper, P (q) will refer

to the 2-dimensional power spectrum of the diffuse emission computed from DIRBE maps after

deconvolution from the beam profile, i.e. P (q) = Pmeasured(q)/W (qϑ).

We determined the effective W and the effective beam size from maps of the beam response

function archived at the NSSDC with 181×225 0.0065◦ square pixels, which we embedded in 2562,

5122, and 10242 pixel arrays. The results for Band 1 are shown in Fig. 2, and are similar for all

eight bands. The solid line shows a top-hat beam profile with ϑ = 0.4◦ which is slightly lower than

the value of ϑ = 0.45◦ adopted in Paper I. From eye fits we adopted ϑ = 0.4◦ in Band 1, 0.37◦

in Bands 2 and 3, and 0.35◦ in Bands 4 to 8. The combined effects of beam smearing from the

motion of the beam during sampling, pixelization, and pointing error would increase the effective

beam size by about 10%, and agree better with Paper I. The beam response function drops below

10% at q−1 <0.15◦ and the pixelization prevents measurement below q−1 = 0.1◦.

4. Near-IR analysis

4.1. Foregrounds and point source removal

Foreground emission from the Galaxy and the solar system is the main problem in unveiling

the expected CIB. At wavelengths less than 10 µm, the dominant foreground after removing the

zodiacal light model is emission from stars in our Galaxy. Using the SAO Bright Star Catalog

magnitudes and colors, we simulated J band maps. We found that aside from the large-scale

shape of the galaxy and a few star clusters this foreground has an almost uncorrelated spatial

distribution. At 12 and 25 µm (DIRBE Bands 5 and 6) the zodiacal dust is so bright that

residuals from the model subtraction dominate the map structure outside the Galactic plane. At

wavelengths of 60 and 100 µm (DIRBE bands 7 and 8) most foreground residual fluctuations come
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from cirrus dust clouds in the Galaxy, and stars contribute little.

The measured fluctuations contributed by point sources can be reduced substantially by

identifying and removing them down to near the confusion noise limit. We used the point source

finding routine developed by the DIRBE team and adopted in Paper I, and call it the “clipping”

algorithm. The data from a selected region (patch) are first used to construct a smoothed model

of the sky background emission for the whole patch, as follows. Surrounding each pixel, a window

of size fsize × fsize is searched for the minimal flux value. We use the minimal value rather that

the median because the stellar brightness distribution is highly skewed. The map of this minimal

(or lower envelope) flux is then fitted to a 2-dimensional polynomial surface of order nfit. This

polynomial is in turn subtracted from the sky map, and the standard deviation σ0 is calculated.

Then, each of the pixels with flux above Ncutσ0 is masked out along with the 8 adjacent pixels,

about twice the DIRBE beam area. This process of fitting a polynomial, identifying bright pixels,

and masking them out, is iterated about 5 times, until no more fluxes above Ncut σ0 are found. In

the near-IR no noticeable improvement is reached above nfit = 2. We discuss the dependence on

fsize in Sec. 4.5; for the results presented below we used fsize = 5. The polynomial fit was used only

for point source masking, no gradients were subtracted from the maps analyzed in this (near-IR)

section, and the results at high galactic latitude (|b| > 20◦) were independent of this choice.

For the near-IR, where foreground stars are the dominant source of fluctuations, there should

be a clear correlation between the fluxes at different wavelengths. Furthermore, because most of

the flux and fluctuations come from K and M stars, and the DIRBE pixels are large enough to

include many stars, the dispersion in the color diagrams for the four near-IR bands should be

small. In Paper I we used these properties to search for CIB fluctuations that have a different

color due to redshifts or a different source spectrum. We construct a linear combination of maps

at two different bands:

∆12 = δF1 − β12δF2. (17)

Note that this ∆ is unrelated to the ∆ of Eq. (12). The variance of this map, C∆(0) ≡ 〈∆2
12〉, is
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minimized for

β12 =
〈δF1δF2〉
〈δF 2

2 〉
. (18)

Because the dispersion in the color index β = δF1/δF2 is small, i.e. σβ =
√

〈β2〉 − 〈β〉2 � β2
12

with the average taken over all the pixels in the patch, the foreground contribution to C(0) will

be reduced by a factor ∼ (β12/σβ)2 � 1. If the fluxes in adjacent bands do not correlate, the

emission in the two bands comes from different sources or from measurement errors (noise).

Since most of the predicted CIB comes from galaxies at z > 0.2 with typical stellar

populations, its color should differ from that of the foreground stars, and the color subtracted

maps should retain some of the CIB structure. If most of the CIB comes from high redshifts so

that

βCIB = 〈δF1,CIBδF2,CIB〉/〈δF 2
2,CIB〉 ≤ 2β12, (19)

the CIB fluctuations in the color subtracted maps will be larger than in the single band maps. We

used Eq. (18) to make all-sky color-subtracted maps for all the adjacent band pairs, in order to

search for a coordinate-independent part of the fluctuations. This method can be generalized to

a multi-color subtraction method, e.g. minimize ∆123 = δF1 − βδF2 − αδF3 with respect to α, β.

We applied this to the DIRBE maps, but without significantly different results.

4.2. All sky variance analysis: C(0)

We divided the sky into 384 patches, each with 32 × 32 pixels, and clipped each patch

individually using the above procedure, with Ncut = 7, 5, 3.5 and 3. Because the foreground

emission at these wavelengths is dominated by point sources, very few pixels are left for Ncut < 3.

We performed the same analysis on 96 patches of 64 × 64 pixels, with similar results.

Our star finding algorithm cuts deeper into the distribution than a simple interpretation

might suggest. Each bright star is observed in about 5 pixels, depending on the position of the

star. The noise distribution of these pixels in the absence of the bright star still has a non-Gaussian

distribution with a non-zero mean. Therefore a star near the clipping threshold will be identified
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in the pixel where the background noise fluctuations are greatest, rather than at the true star

location. Hence, the clipping algorithm finds stars about 1 σ fainter than Ncut , as we confirmed

with simulations.

After clipping the 384 patches, we computed the color indices according to Eq. (18), the

single band C(0), and the color-subtracted C∆(0) for each patch. Figure 3 shows histograms of

the numbers of the remaining pixels after clipping. In the near-IR bands, about 350-450 pixels

out of 1024, or about uncorrelated 75-90 beams per patch, remain for Ncut = 3.5, 3, making the

intrinsic uncertainty of C(0) less than 15%.

In each patch there is a clear correlation between the fluxes in the adjacent bands. Paper I

gave flux correlation plots for selected patches and an earlier model of the zodiacal light. The

current data give similar results. For bands 1-4 all the patches have correlation coefficient R > 0.9

between all the pairs of bands. The color indices have very small dispersion, σβ/β < 10%. Because

the dispersion in β is so small, and most of the predicted CIB emission at these wavelengths comes

from redshifts z > 0.1, the CIB fluctuations should not be removed by the color subtraction.

Fig. 4 plots the histograms of β for Ncut = 3. The maps for the band pair [4, 5] have color

index β ' 0 because the dust in the solar system is not strongly correlated with the stars seen in

Band 4. Between Bands 1 and 2, most of the patches have a color index of β12 ' 2, typical of

K-M giants. In band pairs [2, 3] and especially [3, 4] the spread in β is substantial, suggesting

that star fluctuations are not the only source, or that their color is different in different regions.

The range of color indices for the band differences [2 − 3] and [3 − 4] is reduced for |b| > 20◦,

but nevertheless remains much wider than for the [1 − 2] maps. Most of the map peaks are due

to stars, as we found them in simulated maps derived from the SAO Bright Star Catalog, using

wavelength extrapolations appropriate to the tabulated spectral types.

The lowest limits on C(0) for single bands are similar to those in Paper II, and for the color

subtracted bands they are not very different from Paper I. However, we can now address the

dependence of C(0) on Galactic coordinates. Fig. 5 shows a strong correlation of
√

C(0) with

cosec|b|. Fig. 6 plots
√

C(0) vs. cosec|b| for the color subtracted maps [1-2], [2-3], and [3-4].
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Although the color subtracted C(0) is a factor of ∼ 10 lower than for single bands, the residual

fluctuations still depend strongly on Galactic latitude.

4.3. Near-IR fluctuations from Galactic stars

We would now like to extrapolate the data to estimate the extragalactic contribution to the

fluctuations. We use analytic and numerical models to support a power-law dependence of the

stellar contribution to C(0) on cosec|b|. We also show how to extrapolate the fluctuations due to

Galactic stars to cosec|b| = 0, and that we expect no isotropic residual for C(0) due to stars.

We assume that Galactic stars are distributed with a white noise power spectrum, i.e. they

are spatially uncorrelated except for large scale distribution functions such as those in the Bahcall

and Soneira (1980) and Wainscoat et al. (1992) models. Thus C(0) in the direction b is given by

the following (Galactic) version of the Limber equation:

σ2(x) =
∑

i

∫

L1

4πr2
1

L2

4πr2
2

dP12

=
∑

i

L2
i

4π
ω

∫

∞

Ri

ni(r;x)

r2
dr. (20)

Here the sum is taken over stars of type i with intrinsic luminosity Li, ω is the pixel solid angle,

x = cosec|b|, r is the distance to each star, and ni is the number density of stars at that distance

in the direction of b. The distance to the star is related to the height, Z, above the Galactic plane

by r = Zcosec|b|. In our clipping algorithm, we remove sources exceeding the flux limit of Ncut

×(standard deviation of the background polynomial fit). This standard deviation is approximately

σ from Eq. (20) above, if the integration limits are chosen to match the threshold for star detection

and clipping. We find a very good correlation between the deviation of the fit and the value of the

residual fluctuations in the patch; if all the histograms had the same non-Gaussian shape the two

should be proportional. Hence, the lower limit radius can be approximated to depend on σ itself

via

Ri = [Li/(4πNcutσ)]1/2. (21)
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Equations (20), (21) then allow us to determine σ(b) for a given distribution of stars.

We now derive the latitude dependence implied by these equations. As an example, we use

a plane parallel exponential model for stars in the Galaxy: ni = n0,i exp(− r
hix

). This should be

valid if our clipping radius R is small compared to the exponential scale length for the Galactic

disk α−1 ' (3 - 4) Kpc, and is in rough agreement with the disk in hydrostatic equilibrium with

the Galactic gravity field (Mihalas & Binney 1981). Now Eq. (20) becomes

σ2(x) =
∑

i

R−1
i

L2
i n0,iω

4π
E2(

Ri

hix
), (22)

where En(u) ≡ ∫

∞

1 t−n exp(−ut)dt. We express (22) in terms of the total number of stars in the

dRi interval:

dNi

dRi
= n0,iωR2

i exp(− Ri

hix
). (23)

Then the equation for σ(x) becomes:

1 = N2
cut

∑

i

(

Ri
dNi

dRi

)

[exp(q)E2(q)]|q=Ri/hix. (24)

Consider first the limit when Ri � hi. In this case q < 1 and the term in square

brackets is near unity. The number of clipped stars per beam-width then becomes

N> = ω
∑

i

∫ Ri

0 n(r;x)r2dr ' 3−1 ∑

i(RidNi/dRi), leading to N> = N−2
cut/3. This is much

smaller than we find in the data. Our clipping algorithm removes 9 pixels per star and cuts deeper

than Ncut =3.5 would indicate, and leaves only about 40% of the pixels. This proves that q > 1,

i.e. bright stars are seen out to the scale height of the disk and beyond.

We now consider the variations in star counts with magnitude in a plane-parallel Galaxy. The

differential counts in the magnitude interval dm are given by dN/dm = ω[d ln rm/dm]n(rm)r3
m,

where rm ∝ 100.2m is the radial distance to the star of apparent magnitude m. In the limit of

rm < h, or n ' constant, the counts converge to the uniform distribution limit, dN/dm ∝ 100.6m.

In a plane-parallel Galaxy in which the radial structure can be neglected, the number density of

stars depends only on |Z| ∝ 100.2m sin |b|, and the differential counts in the direction x = cosec|b|

can be related to those at the Galactic pole by

dN

dm
|x = x3 dN(m − 5 log10 x)

dm
|Pole. (25)
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Hence, once the counts at the pole are measured, we can evaluate the expected number counts in

any direction b and then compute the fluctuations in the flux they produce via

σ2(x) ∝
∫

∞

m
10−0.8m dN

dm
|xdm. (26)

This formulation has two advantages: 1) the data on star counts in the polar regions can be used

to evaluate the dependence of star fluctuations on cosec|b|; and 2) the only assumption is plane

parallelism. We tested this assumption with both models and observations.

We now determine dN/dm from the DIRBE data, and compare with prior observations.

Figure 7 shows a Band 2 histogram of log10(|F −〈F 〉|) for a 1282 pixel (38.4◦× 38.4◦) region at the

North Galactic Pole (NGP). This logarithmic form is useful for displaying both large and small

deviations, and we have normalized it to the equivalent number of stars per magnitude per square

degree. The equivalent K magnitude is plotted on the top horizontal axis. With the DIRBE

beam of 1.42 × 10−4 sr (4.5 pixels), F = 1 nWm−2sr−1 corresponds to mK = 9.45. Because the

CIB level and the smooth foreground contributions from dust and faint stars are not known in

advance, we must subtract the mean of this confusion noise before seeking to measure brightnesses

of individual bright stars. We define 〈F 〉 as the mean flux of the map clipped with Ncut = 3.5; in

this case it is 66 nWm−2sr−1 or mK = 5, near the turnover of the distribution. The total number

of pixels with positive values of the flux after the subtraction is 12,359; the remaining 24.6% of the

pixels have negative fluxes. We have plotted both positive and negative deviations to illustrate the

asymmetry of the histogram far from the peak, as well as its symmetry near the peak. Negative

deviations are statistical fluctuations, while very bright pixels are individual cataloged stars. For

the clipped map at Ncut = 3.5, a total of 6,380 pixels remain. Out of these, 2,982 pixels (47%)

have positive fluxes, showing the symmetry of the flux distribution for the clipped map.

Figure 7 also shows a Gaussian distribution with the variance σ ' 10 nWm−2sr−1 computed

with Ncut = 3.5, and for σ = 9 nWm−2sr−1 . The difference between these two Gaussians is

not large on this plot, showing the difficulty of direct detection of a sub-population of Gaussian

fluctuations with dispersion of 5 nWm−2sr−1 .
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The NGP star counts were observed directly by Elias (1978). We show his data at K = 1, 2.5,

3.25 and 8 with N1/2 error bars and our binning of his data. Further NGP data were obtained by

the 2MASS survey in Ks band, almost identical to the DIRBE Band 2, and were kindly provided

to us by Tom Jarrett (1998). The cumulative counts from these measurements were shown in

Fig. 1 of Beichman (1996) out to Ks > 15, who found that they follow dN/dm ∝ 100.3m (cf. his

Table 4). Actual 2MASS star counts from a region of 5 square degrees centered on the NGP are

plotted in Fig. 7. The agreement between the DIRBE counts, the Elias (1978) and Jarrett (1998)

data, and the B = 0.3 extrapolation is excellent over 15 magnitudes, or six decades in flux. South

Galactic Pole counts from Minezaki et al. (1998) are also shown, and confirm the slope as well as

the north-south symmetry of the Galaxy. At mK < 1.5, the counts tend to the slope of B = 0.6

coming from stars much closer than the scale height; if B were less than 0.6, the integrated star

brightness would diverge at the bright end.

The star counts agree with model predictions. Both Beichman (1996) in his Fig. 1 and

Minezaki et al. (1998) in their Fig. 1 show that the counts are fitted well by extensions of either

the Bahcall & Soneira (1980) or Wainscoat et al. (1992) models. An eyeball fit to their data gives

B = 0.3 − 0.32 at K = 11. The Wainscoat et al. model at K = 11 shown in Fig. 1 of Minezaki et

al. (1998) gives log dN/dm ' 1.35, whereas continuation of the solid line in our Fig. 7 to K = 11

gives log dN/dm = 1.3 if B = 0.3 and 1.4 if B = 0.33. The agreement between the two slopes and

normalizations is thus very good. Even the large-beam DIRBE instrument sees far beyond the

scale height of the bright K band stars.

We can now estimate the star brightness fluctuations. We begin with a power law for star

counts in a plane-parallel Galaxy, dN/dm|Pole ∝ 10Bm. Then the fluctuation due to stars fainter

than m at the Galactic pole becomes:

σ2|Pole ∝
∫

∞

m
10−0.8m′+Bm′

dm′. (27)

We now derive the latitude scaling law implied by these assumptions. In our clipping method the

lower limit on m in the integral is given by 10−0.4m ∝ Ncutσ. Combining this with Eq. (25) we
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find that the fluctuation in the total star flux at latitude b is given by the power law

σ ∝ (cosec|b|) 1.2

B
−2. (28)

A uniform, infinite star cloud has B = 0.6, so there is no latitude dependence in that case. If

B = 0.4, then we expect σ ∝ cosec|b|, while if B = 0.3 then σ ∝ cosec2|b|. The dependence of

C(0) on cosec|b| can also be inverted via Eqs. (25), (26) to give a model for dN/dm. There is a

unique relation between the two functions, for a plane-parallel Galaxy and our method of bright

star extraction.

The value of Ncut enters indirectly, since it determines the magnitude m of the cutoff of

detected stars and hence the magnitude at which B is important. Another measure of the star

distribution function is the number of clipped stars, N>. In the power law case we have a very

simple result:

N> =
0.8 − B

BN2
cut

=
2p + 1

3N2
cut

, (29)

where p = (1.2/B) − 2 is the logarithmic slope in Eq. (28). The dependence of N> ∝ N−2
cut agrees

with our results from DIRBE. Evaluating (29) for B = 0.6 (or rm < h) we find N> = 1/3N2
cut, in

agreement with the exponential distribution of Eq. (24) with h = ∞, while for B = 0.3 we find

N> = 5/3N2
cut. The fraction of pixels clipped in the near-IR DIRBE maps at Ncut = 3.5 is ∼ 60%.

Because the clipping algorithm uses a mask with about twice the beam area, this corresponds to

N> = 0.35 so the effective Ncut = 2.2 to 2.4 for p = 2.0 to 2.5. The effective Ncut is less than the

input value of 3.5 because each star is observed in many pixels, each with its own noise.

Similarly, Eqs. (25), (26) allow us to evaluate the expected variation of the residual fluctuation

with Ncut , σ ∝ N
−1+0.8/B
cut . In the limit of a spatially uniform distribution, B = 0.6, and σ ∝ N

1/3
cut .

For B = 0.3 it follows that σ ∝ N1.7
cut, and reducing Ncut from 7 to 3.5 should decrease C(0) by a

factor of 10, in agreement with the DIRBE data.

To summarize this section, we have shown that, for dN/dm ∝ 10Bm with B = 0.3 out to

K < 15, and a plane-parallel Galaxy, we should recover a unique dependence for Galactic star

fluctuations,
√

C(0) ∝ (cosec|b|)2. This value of B is consistent with the Ncut dependence of the
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fraction of clipped pixels and the amplitude σ of the remaining fluctuations in the DIRBE data.

4.4. Extrapolating to cosec|b| = 0

The scatter in Figs. 5 and 6 is large, because the plane-parallel model does not describe the

large scale structure of the Galaxy. We divided the sample of 384 patches into four latitude bins

and plot them against Galactic longitude l in Figs. 8 and 9. The dependence on longitude is

significant for latitudes even as high as |b| ∼ 60◦ . However, for Galactic longitudes between 90◦

and 270◦ and high latitudes there is almost no longitude dependence. We therefore selected data

with 90◦ ≤ l ≤ 270◦, and plot the dependence of
√

C(0) on cosec|b| in Figs. 10 and 11. The scatter

is much reduced.

We tried several fitting functions for the 127 patches for which |b| > 20◦, 90◦ < l < 270◦:

√

Cfit(0) = a + A(cosec|b|)p, (30)

where a presumably contains the cosmological and instrumental parts of the signal,

Cfit(0) = a2 + A2(cosec|b|)2p, (31)

√

Cfit(0) = a +
2

∑

i=1

Ai(cosec|b|)i, (32)

and

Cfit(0) = a exp(Acosec|b|), (33)

minimizing, for example, 〈[(C(0) − Cfit)/C(0)]2〉 with respect to a,A, p. The fits for Eq. (31) are

shown in Figs. 10 and 11 and in Table 1. Except for the color-subtracted [2− 3] maps, all fits give

positive values of a. The color-subtracted maps [2 − 3] and [3 − 4] have large scatter in the color

indices at which the variance C∆(0) is minimized, and do not allow for a robust determination of

a. Note that p > 1 as expected from the model. The star and CIB fluctuations add in quadrature,

as we demonstrated by simulation, so functional forms such as Eq. (31) are better justified than

the other fits, although all give consistent results. The last row in Table 1 summarizes our limits
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on a with errors corresponding to the extreme range from 92% confidence levels from all the fits,

around our preferred central value from Eq. (31).

We estimated the statistical uncertainty as follows. We define a relative variance

σ2
0 ≡ min〈[(data − fit)/data]2〉 and a normalized χ2

N (a,A, p) ≡ 〈[(data − fit)/data]2〉/σ2
0 . Fig.

12 plots deviation histograms vs. (δfit/σ)2 where δfit ≡ (C(0) − a2 − A2x2p)/
√

C(0). For purely

Gaussian deviations the histograms would be straight lines of slope −1/2.

We plot contours for ∆χ2 = 7 which for 3 parameters (a, p,A) corresponds to a confidence

level of 92%. Fig. 13 shows thus determined confidence contours projected onto the (a, p) plane

for Bands 1 to 4, according to Eq. (31). The uncertainties shown in Table 1 correspond to the

largest span of a in the panels in Fig. 12; for any given value of p the corresponding uncertainty

levels are reduced significantly. This is the reason for the smaller formal uncertainties on a when

an exponential fit - Eq. (33) - is assumed. Excluding from the analysis the patches that lie close to

the Ecliptic plane further reduces the scatter in Figs. 10, 11, but the contours are almost identical

to those in Fig. 13. Likewise, keeping only the patches at 120◦ < l < 240◦ produces the same

result. The results for Ncut = 7 and 5 are consistent but with a larger uncertainty, whereas for

Ncut = 3 the results are close to those shown in Table 1. The values for p are in good agreement

with the expectations from the star counts. For Band 2, the maximal spread is 1.5 ≤ p ≤ 2.6,

which corresponds to 0.26 ≤ B ≤ 0.34 in good agreement with Fig. 7.

To summarize, we have justified simple power law star count models and a plane parallel

model of Galactic fluctuations by comparing the predictions to the measurements. The model

applies only far from the Galactic center and Galactic plane. There is a statistically significant

residual term in the DIRBE data after extrapolation to zero cosec|b|, with consistent values for

four different fitting functions and for different Ncut . Plate 1 of our Paper II shows visually that

there is no obvious structure in the selected anti-center |b| > 20◦ data set. We checked the validity

of our simple models by studying the residuals of the fits. Fig. 14 shows the residuals for Eq. (31)

for each patch fluctuations,
√

C(0) in Band 2. There is no apparent correlation with Galactic

longitude or latitude and the residuals are similarly independent of the ecliptic coordinates.
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To consider whether the instrument itself or the zodiacal light could be a source for this

residual, we review the estimates in Paper I. There we constructed maps of the differences between

different weeks of observation, and found noise levels
√

C(0) ∼ 1.5, 0.3, 0.1 nWm−2sr−1 in Bands

1 through 3 for Ncut = 3.5. These are much smaller than a in Table 1, and it is unlikely that a

is due to noise. Similar arguments apply to errors in the zodiacal light modeling, which varies

from week to week, and would contribute to the measurement error calculation. In any case, in

the near-IR bands the contribution of the zodiacal light is small. It should be largest at 12 and 25

µm, where the residual fluctuations are below 1 nWm−2sr−1 (Paper II and Sec. 5 of this paper),

or < 1% of the total foreground. Therefore, the near-IR zodiacal modeling errors should be quite

negligible compared to a. Furthermore, zodiacal light has a sharp cusp near the ecliptic plane,

and zodiacal model errors would reflect this spatial dependence. We tried excluding patches in or

near the ecliptic plane and found no change in a, p. The spatial correlation function that we find

for Ncut = 3 .5 (cf. Fig. 19) is significantly different from that expected for zodiacal light. The

zodiacal light is smooth except near the ecliptic plane, where dust resonances and asteroid family

debris are found.

We conclude that the single band plots all indicate a positive and approximately isotropic

residual term that is unlikely to be produced by either instrumental noise or errors in the

zodiacal modeling. Since independent contributions add linearly to the combined variance, such

a component would contribute only ∼ 10% to the total dispersion of the confusion noise at the

faint end of the flux distribution plotted in Fig. 7, and would not be detectable there. The Figure

shows two Gaussians differing in dispersion by 10%, and they both seem reasonable fits.

4.5. Analytic and Numerical Modeling

Since the measured residual a can not be explained by known errors, we must investigate the

stellar foreground fluctuations more carefully. To do so, we simulated the confusion noise process

both analytically and numerically.
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Our analytical approach assumes a power law for dN/dm, with a Fourier method to simulate

the histogram of Fig. 7. Let P(F ) be the probability distribution function to find a single star

in the line of sight with flux F . The probability distribution function and its characteristic

function G(f) are a pair of one dimensional Fourier transforms, G(f) =
∫

P(F ) exp(ifF )dF . The

probability distribution function of finding two stars is the convolution of P with itself and the

characteristic function for it is G2(f). Similarly, for n stars the characteristic function is Gn(f).

For sufficiently large n the characteristic function tends to a Gaussian, which can be seen from

expanding G(f) ' 1− f2〈F 2〉, (Chandrasekhar 1954). For a Poisson distribution with m stars per

pixel on the average, the probability to find n stars in a given pixel is P(n) = mn exp(−m)/n!.

Then the complex Fourier transform of the Poisson distribution of stars with an average of m

stars per pixel is exp(m(G − 1)). For many stars and sufficiently small f or large fluctuations

G(f) ' 1 − 1
2f2〈F 2〉, and the previous expression converges to a Gaussian distribution whose

width ∝ m−1/2. This prescription was implemented numerically assuming P(F ) ∝ 10−2.5B log10 F

with B = 0.3. Convolution of the predicted star histogram with Gaussian measurement noise and

Gaussian cosmic background fluctuations can be included by multiplying G(f) by a Gaussian.

The effective beam size sets the maximum value of the apparent dN/dm in the confusion noise

region. We are able to reproduce Fig. 7 very well, including the negative fluctuations and the

transition from the confusion noise region to direct star detection. The result is robust in that the

effective value of B measured at the bright end of the distribution is not altered by subtracting

the mean value, and clipping with various Ncut has no effect on the value of B at the bright end.

The apparent number of bright stars is about 10% larger than the input value, owing to the bias

introduced by undetected stars of medium brightness near the detected bright stars.

We also want to know whether there is any feature of our processing algorithm that could

produce a spurious residual fluctuation a. For this, we need a numerical simulation of the sky,

including both stars and possible cosmic terms. We used the DIRBE star model of Arendt et al.

(1998), who implemented the 96-component star population model of Wainscoat et al. (1992),

including spatial distribution models for the disk, bulge, halo, ring and arm populations. These

were evaluated using the K-band dN/dm for the central pixel of each patch, and a 2-dimensional
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uniform random number generator, and the stars out to K = 20 were placed at the centers of the

pixels in the map. The flux from each star was then distributed among 9 pixels according to the

measured or assumed beam shape, using delta-function, uniform, and Gaussian beam profiles. If

the correct beam profile is used, the simulated maps processed with our algorithms match the

DIRBE histograms in each patch very well.

We also simulated CIB fluctuations, starting with Gaussian fluctuations in Fourier space with

power spectrum P (k) = k−1.3, as expected on the smallest DIRBE scales, and then multiplied by

the top-hat beam window function determined in Sec. 3. The resultant field was then Fourier

transformed to real space and normalized to the modeled cosmic variance, σsky. We added these

maps to the simulated star fluctuation maps and examined the results.

As was discussed in Sec. 4.2, our clipping algorithm clips effectively about ∼ 1 σ below

the nominal value of Ncut , because each star is seen in multiple pixels, each with its own noise

fluctuations. Furthermore, according to Eq. (29), there should be no variation with cosec|b| in

the number of stars clipped in each patch if the star counts follow the same B over the relevant

range of magnitudes. To test this we computed the effective Ncut,eff =
√

5
3N−1

> according to Eq.

(29) assuming B = 0.3. The number of clipped stars, N>, is half the number of clipped pixels

since our mask has twice the beam area. The results are plotted against cosec|b| in Fig. 15 for

both the real sky and the model Galaxy. The data show that in the anti-center quadrants outside

the Galactic plane, there is no trend with cosec|b|, and the effective values of Ncut have very

small dispersion. For the real sky, the mean in this range is Ncut,eff = 2.26 and the dispersion is

σcut = [〈N2
cut,eff 〉 − 〈Ncut,eff 〉2]1/2 = 0.06. For the model sky, the mean Ncut,eff = 2.27, and the

dispersion is 0.07. The effective Ncut is independent of the simulated beam properties.

We found a simple way to test the assumption of a plane parallel Galaxy. As Eq. (25) shows,

the quantity x−3(dN/dm)|x plotted against m − 5 log10 x should be independent of x = cosec|b|

and be equal to the counts at the Pole. We computed histograms for 14 patches of 64 × 64 pixels

at |b| > 20◦, |βecl| > 30◦ and 90◦ < l < 270◦. The patches were clipped at Ncut = 3.5 and the

average flux for the remaining pixels of each patch was subtracted from the map. The resultant
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distribution of x−3dN/dm is plotted in Fig. 16 for K band, with Poisson error bars for those points

that contain at least 25 pixels (or 5.5 stars). The figure confirms that the stars are distributed in

a plane-parallel way for this data set, with B ' 0.3. The plot includes lines for the model Galaxy,

with error bands. They agree with the observations within the errors except at the bright end,

where the model is slightly low.

We simulated skies with a cosmic term of σsky = 5 nWm−2sr−1 for the same 64 × 64 patches.

The observations and the simulated model are plotted in Fig. 17, with fluxes measured in units of
√

C(0). If all the fluctuations are due to stars drawn from a power law distribution of the same

slope, then all of the patches should follow the same line on this diagram. The DIRBE data and

the synthetic Galaxy model look nearly identical, and there is no noticeable difference between

σsky = 5 nWm−2sr−1 and 0. The DIRBE data and the models could be matched even better by

adjusting the beam shape for the synthetic maps. The simulated confusion noise does not affect

the amplitude and slope of the star counts at mK < 5.5.

Using our simulated models we also tested the scaling of the amplitude of the residual variance

at given Ncut as a function of the input isotropic component σsky. This is important because our

clipping algorithm might remove both cosmic and star fluctuations in a complicated and possibly

non-linear way. We find that even at Ncut = 3.5, the residual variance C(0) is to good accuracy

the sum of the variances from stars and the simulated CIB contribution. This shows that Eq. (31)

is better justified than the other choices for extrapolating to cosec|b| = 0. The choice of beam

shape - Gaussian, delta-function, or uniform - has no effect on the effective Ncut , but does lead to

a systematic change in the residual C(0), with the largest beam area having the highest variance.

Similarly, changing the size fsize of the lower envelope region used by the point source

recognition algorithm has no affect on Ncut,eff , but leads to a systematic dependence of

C(0) ∝ 1/fsize. Clearly, the larger the value of fsize, the more diligently the algorithm recognizes

point sources. We used fsize = 5, corresponding to about 5 DIRBE beams.

We can now predict what the Galactic star counts ought to be in order to reproduce the C(0)

vs. x = cosec|b| relation found in the previous section. Combining Eqs. (25) and (26) shows that
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for a plane-parallel model the star contribution to the fluctuation is related to dNP /dm at the

Pole via

xσ2(x) = F 2
0

∫

∞

mL−5 log10 x
10−0.8y dNP

dy
dy, (34)

where F0 is the zero magnitude flux; for Band 2 it is 6050 nWm−2sr−1 per DIRBE pixel. The

lower magnitude for our clipping method is given by mL = −2.5 log10[fmNcutσ(x)/F0]. Here fm

is a factor accounting for the beam and the lower envelope used; based on the discussion in the

previous paragraph we expect fm ∼ 0.5 − 0.6. Differentiating both sides of Eq. (34) leads to

dNP

dm
= 100.4m 0.4 ln 10

fmNcutF0

∂[xσ2(x)]/∂x

∂[x2σ(x)]/∂x
. (35)

Here the right-hand-side should evaluated for x given by:

m(x) = −2.5 log10[fmNcutx
2σ(x)/F0]. (36)

Eqs. (35), (36) form a closed set to determine the star counts required to reproduce the σ(x).

They thus provide an important consistency check between the measured effective Ncut , the

C(0) - x relation, and the star counts at the Galactic Poles. They also show whether the

cosec|b|-independent part of C(0) can be produced by the observed stars.

We can measure the fm factor by normalizing the recovered star counts to the DIRBE data at

mK = 4, where the confusion noise is negligible, and find fm ' 0.6. The solid line in Fig. 7 shows

the recovered star counts at the Pole from C(0) given by Eq. (31) with a = 0 with parameters

(A, p) taken from Table 1. The agreement between the star counts inverted from the observed C(0)

- x relation and the actual data is remarkably good, considering the statistical uncertainty in A, a

and p, and given that all three (C(0) vs. x, Ncut and dNP /dm) were determined independently.

The dashed line in Fig. 7 shows the star counts required to reproduce Eq. (30) with a = 4.8

nWm−2sr−1 according to Eqs. (35), (36). The line overshoots the data by several standard

deviations at mK > 5 and shows that this value of a cannot be produced by the observed Galactic

stars.

We can now use the simulated sky maps to test the extrapolations to cosec|b| = 0. We

constructed simulated data for 384 patches of 32 × 32 pixels which contained both the K Band
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Galaxy synthetic model, and a contribution from the CIB with σsky varying from 0 to 20

nWm−2sr−1 . Processing the simulated maps with the standard algorithm, we find that the

model without the CIB term is a good match to the DIRBE data at intermediate latitudes, but

is significantly steeper as cosec|b| → 0 at |b| > 45◦, and has a zero intercept within the statistical

errors. On the other hand the simulated data curve at |b| > 45◦ flattens out for positive values of

σsky.

We also tried fitting the simulated sky fluctuations to the observations, using

C(0) = Amσ2(σsky) + am, and found the effective gain and offset Am, am. This approach

has the advantage of including all that is known about the geometrical shape of the Galaxy, since

the simulated maps use the Wainscoat et al. (1992) shapes for the disk, bulge, halo, ring and arm.

If the model includes a cosmic term of the correct amplitude, then we should find A = 1, am = 0.

We find that for a model σsky = 0 the value of Am = 1.4 ± 0.3, consistent with unity, and the

numbers for Am for positive values of σsky are similar. We could achieve A = 1 by better modeling

of the DIRBE beam size, since we have already shown that relationship.

We also confirm the values for the residual fluctuations a in Table 1. If the modeled sky has

σsky = 0, we find
√

am = 7.3+2.0
−2.8 nWm−2sr−1 in agreement with Table 1. Conversely, if we choose

a model σsky similar to a in Table 1, then am should be consistent with zero. We find am = 0 with

the 92% confidence level for 2.8 nWm−2sr−1 < σsky < 8.3 nWm−2sr−1 with the central value lying

at σsky = 5.2 nWm−2sr−1 .

We can imagine only one possible feature in the DIRBE data processing that could lead

to a false conclusion about the latitude dependence. We have shown that for a range of fixed

beam size and shape, the sky models all predict a dependence of star fluctuations on latitude

that extrapolates to zero fluctuations at zero cosec|b|. There is however some possibility that the

effective beam size might depend on the line of sight and hence possibly on Galactic latitude. To

explain the measurements, we would have to find an effect that systematically changes the effective

beam area by an amount of the order of 30%, comparable to the fraction of the fluctuations at the

Galactic pole that seem to be of cosmic origin.
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The DIRBE team measured the actual beam size very carefully from transits of bright stars

through the beam, and did not find a significant dependence of beam profile on time or direction.

However, as noted elsewhere, the effective beam profile for measuring fluctuations depends on

several other effects. The effective beam area is approximately Ω = 2π(θ2
beam/2+ θ2

pixels + θ2
pointing),

where θbeam is the measured beam radius, θpixels is the rms radius of the pixels, and θpointing is

the rms (vector) pointing error. The rms pixel size is dpix/6
1/2 = 0.132◦ for a square pixel of

side dpix, but for a rhombus of the same area and a 60◦corner angle, it is increased by a factor of

(2/
√

3)1/2 = 1.075 to 0.142◦. Ignoring pointing error, this increases the effective beam area by

3.2%, a negligible amount in this context. The measured DIRBE pointing error is 1.5 arcmin (1

σ), and increases the effective beam area by a fixed 3.9%. If, however, the pointing error were

much larger than indicated by the statistics of the residuals from the pointing solution fits, and in

addition were strongly dependent on Galactic latitude, the effect could be important for us. The

pointing solution was the subject of extraordinary scrutiny by the COBE team, and such errors

would have been noticed. We conclude that the latitude fitting method is not subject to errors

due to changes of the effective beam size with latitude.

4.6. Power spectrum

Although the dominant spatial structure of the near IR maps is simply the white noise of

stars, it is interesting to see whether large scale averages could reveal a CIB component. We

computed both power spectra and angular correlation functions, and the results are shown in Figs.

18 and 19. We describe the power spectra first.

We used 96 patches of 64×64 pixels (or 19◦×19◦), and computed spatial power spectra

without star clipping, and with Ncut = 7 and 5, leaving over 90% and 80% of the pixels remaining

at high latitudes. Smaller Ncut left too few pixels for reliable power spectra, and showed significant

effects of the masking. We computed power spectra for single bands and for the color-subtracted

maps, δ1 − βδ2, with β evaluated for each patch according to Eq. (18). After each power spectrum

was calculated, it was divided by the beam window function discussed in Sec. 3 to take out the
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instrument signature. The fact that the power spectra are approximately flat confirms that stars

are the dominant sources of fluctuations for Ncut = 5, and that the effective window function,

accounting for pixelization, map distortion, beam smearing, and pointing errors, is correct.

The single band power spectra also show large-scale gradients produced by the Galactic

structure. The amplitude of the power spectrum decreases with Ncut, but the overall shape does

not change appreciably, indicating that the beam mask effects are negligible for these values of

Ncut . The amplitudes of the power spectrum for all angular scales are too large, and the shape

too wrong, to allow for detection of the CIB structure. However, for some patches at Ncut = 5 the

spectrum is close to that expected from Table 1. For Ncut of 5 or more, we can not extrapolate

these power spectra to cosec|b| = 0 for most of the scales probed by P (q), and for smaller Ncut

there are too few pixels left.

Fig. 18 shows the power spectrum for patch No. 7, at Galactic (l, b) = (115◦, 61◦), and ecliptic

(βEcl, λEcl) = (56◦, 163◦). In the single bands, the amplitude of the power spectrum decreases

strongly after point source removal, but the shape remains approximately the same. The solid line

in each panel shows the CIB signal according to Table 1, assuming that the CIB power spectrum

has P ∝ q−1.3. This is a valid approximation for scales below one degree, but on large scales the

power index of the CIB power spectrum may be different. The power spectrum of the foreground

exceeds the estimated CIB by only a modest factor, particularly in Band 4. An instrument with a

smaller beam might detect these fluctuations directly.

Color subtraction significantly reduces the foreground structure, as shown in Fig. 18. Without

clipping, we find a reduction by a factor of ∼ 30 between adjacent bands, although the spectra are

still flat from star fluctuation noise. Galactic stars are dominant in Band 4 and zodiacal and cirrus

emission are dominant in Band 5, so these bands are not strongly correlated. For this patch, color

subtraction of Bands 4 and 5 shows structure dominated by cirrus dust, which has P ∝ kn with a

steep n = −2 to −3; see Sec. 5. The solid line in the lower panels shows the estimated small-scale

CIB between Band 1 and Band 2 with logarithmic slope of −1.3 and C(0) taken from Table 1. In

Bands [2 − 3], we plot
√

C(0) =2 nWm−2sr−1 .
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For lower values of Ncut and q−1 > 1◦, the amplitude of P (q) is comparable to that expected

from the CIB according to Table 1. Furthermore, the slope of the power spectrum for this patch

flattens significantly in the color-subtracted maps, and at some scales and bands approaches

the logarithmic slope expected from the CIB. However, inspection of the power spectra shows

that even in the color-subtracted maps, we do not detect a cosmological signal for Ncut ≥ 5.

The spectra are all consistent with the white-noise stellar distribution and large-scale Galactic

gradients. To check for a cosmological power spectrum consistent with Table 1 we would have to

clip to much lower levels of Ncut where beam masking problems prevent reliable determination of

the power spectrum.

For Ncut < 5, it is better to compute angular correlation functions, which are unbiased

by masking effects, even for Ncut = 3.5 where less than 50% of pixels remain. We evaluated

C(θ) = 〈δF (x + θ)δF (x)〉, averaging over the remaining pairs of pixels separated by angular

distance θ. (The points at different θ are not statistically independent of each other. For Ncut =

7 and 5 the correlation function is that of white noise, a delta function at zero lag, with a level

consistent with the power spectrum plotted in Fig. 18. It remains close to the zero-lag value on

scales inside the beam, θ < 0.5
◦

and rapidly drops to very small (positive or negative) numbers on

larger scales. For Ncut = 3.5 for patches with low values of C(0) the correlation function flattens

significantly, which would be consistent with CIB structure at the levels of Table 1. Fig. 19 shows

the correlation function for Patch 7 at Ncut = 3.5, for 10 bins of 1 degree width. The straight line

illustrates the slope of a CIB correlation function ∝ θ−0.7. The correlation function amplitude and

slope are consistent with Table 1 and a CIB interpretation. Large-scale gradients in the star and

dust populations are responsible for the positive correlation function at very large angles.

A further comparison between the results in Table 1 and the power spectrum analysis can be

made in the following way. For Ncut = 5 at each angular scale q−1, we evaluate the minimal value

of P (q) for all the patches, and plot the value of a typical fluctuation,
√

q2P (q)/2π, versus θ = π/q

in Fig. 20. The slope of the data is roughly that of white noise,
√

q2P (q)/2π ∝ q, implying that
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we are still seeing Galactic stars. The upper limits over angular scales of 2◦ < θ < 15◦ are:

δFrms(θ) ≤ A(
θ

5◦
)−1, (37)

with A = 6, 2.5, 0.8, 0.5 nWm−2sr−1 for Bands 1 to 4 respectively. The process of finding an

all-sky minimum of P2(q) produces a very smooth curve whose uncertainties are predominantly

systematic. These are strong constraints on galaxy evolution. The shaded areas represent the

power spectra according to Table 1, assuming that the CIB P (q) ∝ q−1.3. Table 1 is consistent

with the upper limits given by Eq. (37), except in Band 4. In Band 4, Table 1 would require a

small scale for the turn-over in the CIB power spectrum, implying that much of it comes from

high redshifts.

5. Results in mid- to far-IR Bands

5.1. Foregrounds and C(0) analysis

At wavelengths greater than 10 µm, dust in the Solar system and the Galaxy produce most of

the foreground emission. These sources are smooth on small scales, so do not necessarily prevent

detection of CIB fluctuations. Odenwald, Newmark and Smoot (1998) detected < 100 nearby

galaxies in the DIRBE data at wavelengths greater than 10 µm, but with the exception of M31

and the Large and Small Magellanic clouds, the galaxies are unresolved. Because there are few

discrete sources in the mid and far-IR DIRBE data, we can clip the DIRBE maps to lower values

of Ncut and keep the same number of pixels as for the near-IR bands.

Clipping to low values of Ncut would remove some fluctuations in the CIB as well as the

foreground. If the CIB zero-lag signal were as high as the upper limit found in the maps, clipping

at Ncut = 2, 2.5 or 3 levels would decrease the real C(0) by 20%, 10% and 0.001% respectively.

Given that we find only upper limits, clipping down to Ncut = 2 is safe but lower levels would

require interpretation.

Fig. 21 shows histograms of the number of pixels remaining in each patch of 32×32 pixels
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after removing point sources with Ncut = 2. Because of the extended nature of the foreground

emission in these bands, we removed large-scale gradients first, using polynomials of order up to

4. Fig. 22 shows the variation of the residual C(0) with cosec|b| at Ncut = 2 for 90◦ < l < 270◦.

A significant fraction of the foreground emission still comes from the zodiacal light, even after

subtraction of the DIRBE zodiacal light model, and contributes to the large scatter in the plots.

Fig. 22 also shows the dependence of C(0) on Galactic latitude for the 111 patches that also have

Ecliptic latitude |βEcl| > 25◦. The scatter is reduced but not enough to extrapolate to cosec|b|=0.

In Bands 5 and 6 there is only a weak dependence on b, and the amplitude of the typical

fluctuations seen in these bands changes by only ∼ 50% between cosec|b| = 1 and 3, showing

approximate isotropy for |b| ≥ 20◦. We interpret the lowest values of
√

C(0) as upper limits on

the CIB fluctuations. They are slight improvements over Paper II, and are shown in Table 2.

In Bands 7 and 8 the dependence on Galactic latitude is more prominent. Extrapolation to

cosec|b| = 0 with Eq. (30) gives values of a in agreement with the lowest
√

C(0) shown in Table 2,

but with significant error bars. Therefore we again interpret the derived C(0) as upper limits on

the CIB fluctuations. The slope of C(0) with Galactic latitude is consistent with a plane parallel

Galaxy distribution, i.e.
√

C(0) ∝ cosec|b|. The fluctuations are approximately proportional to

the total brightness.

The color diagrams at these wavelengths are not as clean as in the near-IR. In many patches

no color correlations between the adjacent bands exist, and the color indices show large variations

across the sky. Local variations in the parameters of the Galactic and solar system dust (e.g.

density and temperature) are expected on large angular scales. No improvement in the CIB limits

was achieved with mid-IR color subtraction.

5.2. Mid- and Far-IR Power Spectra

We computed power spectra for the same 96 patches of 64×64 pixels used for the near IR

bands. Both single band power spectra and color-subtracted maps show a weak decrease with
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clipping threshold, a consequence of the extended character of the foreground emission. The

reduction of the foreground with the color subtraction is not as large as in the near-IR bands. In

order to preserve information about P (q) at all angular scales, no gradients were removed before

power spectrum analysis.

The power spectra have a shape typical of the known cirrus distribution (cf. Gautier et al.

1992). The spectrum P (q) is steep: P (q) ∝ q−n with n ' (2.5 − 3). This is consistent with little

small scale structure and, hence, no strong dependence in the resultant C(0) on Ncut. It is also

consistent with the power spectrum of cirrus emission measured on arc-minute and degree scales

(Gautier et al. 1992; Wright 1998). Fig. 23 shows power spectra for the same Patch 7 used in

the near-IR analysis. It shows the steep power spectrum typical of the cirrus distribution with

P (q) ∝ q−3 for most of the scales. Note that some of the fluctuations at 12 and 25 µm can be due

to errors in modeling the zodiacal light.

As in the near-IR analysis, we evaluated the minimal values of P (q) for each angular scale

q−1 across the entire sky. Fig. 23 shows these minimal values of the fluctuation
√

q2P (q)/2π as a

function of angular scale π/q. The minimal values come close to, but are not as small as, those

in Table 2, which were evaluated at Ncut =2 after gradient subtraction. Even in the patches with

the least fluctuations, the power spectrum is still as steep as P ∝ q−2, leaving the fluctuation
√

q2P (q)/2π ' const. This is indicative of cirrus emission in all areas of the sky. Infrared sky

surveys with higher angular resolution should be able to reduce this contribution, and possibly

uncover the CIB fluctuations.

6. Conclusions

Fig. 24 summarizes our results. At 1-5 µm, we find a positive residual fluctuation by

extrapolating C(0) to zero cosec|b|. Based on detailed numerical and analytic models, this residual

is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We

conclude that this extra variance may result from structure in the CIB. The variance found in
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this way from individual DIRBE Bands 1-4 is plotted with diamonds, with 92% uncertainty levels

from Fig. 13. The results for color-subtracted maps are plotted with triangles at wavelengths

halfway between the bands used. We find a positive residual in the color-subtracted map [1-2]

between Bands 1 and 2, but not in other color subtracted maps. The color-subtracted map

[1-2] has a unique color of β12 ' 2 with little variation across the sky and the limit measures

[〈(δF1 − 2δF2)
2〉]1/2. Taken at face value, these high values of the near-IR CIB fluctuations, if

produced by evolving normal galaxy populations, would require substantial CIB fluxes. These

would have to be above the estimates from the K-band galaxy counts, but are below the upper

limits found by Hauser et al. (1998). The upper limits on CIB fluctuations at 10 - 100 µm are

plotted with arrows, and are below 1 nWm−2sr−1 , with
√

C(0) < 0.5− 0.7 nWm−2sr−1 at 25 µm.

These limits are lower than those in Paper II and imply strong constraints on how and when the

early galaxies formed and evolved.

On larger scales, 2
◦

< θ < 15
◦

, we obtain upper limits on the CIB fluctuations from the

all-sky power-spectrum analysis: (θ/5
◦

) × δFrms(θ) < 6, 2.5, 0.8, 0.5 nWm−2sr−1 in Bands 1-4

respectively. These limits, when taken in conjunction with our possible detection of the zero-lag

CIB signal, limit the turn-over scale in the spectrum of the primordial density field to not much

more than ∼ 100h−1Mpc.

We fully recognize the difficulty of finding small fluctuations in the presence of larger

fluctuations from foregrounds. While we have found no local explanation for our results, it is still

quite possible that the fluctuations are not of cosmic origin, but come from some fault of the

instrument, the data processing, or an unexpected feature of the Galactic foreground. The best

way to resolve this uncertainty is to get better data, such as from a higher resolution sky survey

with exceptionally good attention to flat fielding. This may be possible with satellites like SIRTF

or the proposed NGSS, or even from 2MASS data or rocket data.
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Fit Band 1 Band 2 Band 3 Band 4 Band 1-2 Band 2-3 Band 3-4

1.25 µm 2.2 µm 3.5 µm 4.9 µm
√

C(0) = a + Axp

a 12.5+4.3
−5.7 4.8+1.8

−2.4 1.9+0.6
−0.7 2.0+0.2

−0.2 6.7+1.6
−2.5 −− 1.4+1.2

−1.6

p 2.15+0.41
−0.41 2.18+0.41

−0.41 2.31+0.45
−0.45 2.79+0.61

−0.58 1.92+0.55
−0.54 −− 1.47

C(0) = a2 + A2x2p

a 15.5+3.7
−7.0 5.9+1.6

−3.7 2.4+0.5
−0.9 2.0+0.25

−0.5 7.6+1.2
−2.4 −−

p 1.78+0.27
−0.27 1.79+0.28

−0.29 1.89+0.33
−0.33 2.03+0.90

−0.78 1.49+0.34
−0.33 −− 1.23

√

C(0) = a +
∑2

i=1 Aix
i

a 14.9±5.4 5.6±2.2 2.5±1.2 2.7±1.2 6.6 ± 0.8 −− 0.9 ± 0.9
√

C(0) = a exp(Ax)

a 9.7 ± 0.6 3.7 ± 0.2 1.3 ± 0.1 1.3 ± 0.1 5.3 ± 0.2 3.6 ± 0.2 1.5 ± 0.1

x = [ln
√

C(0)-ln a]/A

a 8.8 ± 1.3 3.3 ± 0.3 1.1 ± 0.1 0.8 ± 0.1 4.8 ± 0.6 1.8 ± 0.4 1.2 ± 0.1

Summary

a 15.5+3.7
−7.0 5.9+1.6

−3.7 2.4+0.5
−0.9 2.0+0.25

−0.5 7.6+1.2
−2.4 −−

Note: x = cosec|b|

Table 1: Limits on a in nWm−2sr−1 ; the range corresponds to 92% confidence levels.
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Band 5 Band 6 Band 7 Band 8

12 µm 25 µm 60 µm 100 µm

√

C(0) 1.0 0.5 0.8 1.1

Table 2: Upper limits on [C(0)]1/2 in nWm−2sr−1 for Bands 5-8.
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Fig. 1: (a) Left: Linear scales of 0.5◦ in Eq. (12) vs. z. The minimal scale is almost

independent of cosmology. (b) Right: ∆(k) ≡ (R−1
H k2P3(k; 0))

1/2
vs. k for APM spectrum. The

CIB minimal relative fluctuations on the DIRBE beam scale are ∼ ∆ at the minimal value of the

linear scale.

Fig. 2: Window function and beam profile for DIRBE Band 1 beam. Plus signs show

embedding in a 2562 pixel field, asterisks 5122 pixels, and diamonds 10242 pixels. Solid line is a

top-hat profile with a beam radius of ϑ = 0.4◦.

Fig. 3: Histogram of pixels surviving clipping at Ncut = 3.5 in the near-IR DIRBE bands

for 384 patches of 32 × 32 pixels. Solid line is Band 1, dotted Band 2, dashed Band 3, and

dashed-dotted Band 4.

Fig. 4: Histograms of color indices β from Eq. (18) for 384 patches. Thin solid lines are

all-sky; thick lines are patches with |b| > 20◦.

Fig. 5:
√

C(0) vs. cosec|b| for Bands 1-4 and Ncut = 3.5.

Fig. 6: Same as Fig. 5 but for color subtracted maps.

Fig. 7: K band dN/dm and DIRBE pixel histogram for 1282 pixels at NGP. Flux F is absolute

value of deviation from mean of patch after clipping with Ncut = 3.5, measured in nWm−2sr−1 .

Positive deviations are + signs, diamonds negatives. Poisson error bars for DIRBE data assume

4.5 DIRBE pixels per star. Dotted lines are a Gaussian fit to data after clipping, and a 10% lower

dispersion. Dash-dots are positive pixels remaining after clipping and dash-dot-dot-dot shows

remaining negative pixels. Solid line shows counts inverted according to Eqs. (35) and (36) from

Eq. (31) without an isotropic component; long dashes are inverted counts if a comes from stars.

Filled triangles are differential counts from Elias (1978) NGP measurements. Filled circles are

differential NGP counts from 2MASS (Jarrett 1998). Open triangles are cumulative 2MASS counts

multiplied by 0.3 ln 10 to convert to differential counts for dN/dm ∝ 100.3m. Filled diamonds with

error bars are South Galactic Pole counts from Fig. 1 of Minezaki et al. (1998).
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Fig. 8: Longitude dependence of
√

C(0) for individual DIRBE bands at various Galactic

latitudes. The increase of fluctuations towards the Galactic Center can be seen for any Galactic

latitude.

Fig. 9: Same as Fig. 8 only for color-subtracted maps.

Fig. 10: Plots of
√

C(0) vs. cosec|b| for J, K, L, M bands for 90◦ < l < 270◦. Solid lines are

fits of Eq. (31) using data for |b| > 20◦.

Fig. 11: Same as Fig. 10 for color-subtracted maps.

Fig. 12: Histogram of fit residuals from Eq. (30) for Band 2 δ2
fit = [(C(0) − a2 −

A2cosec2p|b|)/C(0)]2 in units of σ0.

Fig. 13: 92% confidence limits on J, K, L, M and J-K for the fits to Eq. (31). The plus sign is

the most likely value of (a, p) from Eq. (31).

Fig. 14: Scatter diagram for fit residuals δfit ≡ [
√

C(0) −
√

Cfit(0)]/
√

C(0) for Eq. (31) for

Band 2 versus l and b.

Fig. 15: Effective clipping Ncut vs. cosec|b|, according to Eq. (29) for p = 2 or B = 0.3. Left

is DIRBE data and right is simulated Galaxy model.

Fig. 16: K-band DIRBE star counts in coordinates where a plane-parallel Galaxy would be

a single line; x = cosec|b|. Data are for 64 × 64 pixel patches with |b| ≥ 20◦ and 90◦ < l < 270◦,

with Poisson errors shown for Npix ≥ 25. Confusion noise affects counts at mK > 5.5. Lines show

the model Galaxy: solid is mean x−3dN/dm and dashes are the ±1-sigma spread.

Fig. 17: K-band star counts in the 64 × 64 patches outside the Galactic disk and away from

the center, as a function of the absolute value of the flux deviation from the mean in units of
√

C(0), for Ncut = 3.5. Left shows DIRBE data and right shows the simulated Galaxy and a CIB

fluctuation of σsky = 5 nWm−2sr−1 from Table 1. Plus signs are for negative F and diamonds for

positive F ; they overlap for small |F |.

Fig. 18: Near IR power spectra for Patch 7, well above the Galactic and Ecliptic planes. Plus
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signs are before point source removal, asterisks show Ncut = 7, and diamonds show Ncut = 5. Solid

lines show P (q) expected if the CIB power spectrum scales as q−1.3 for a in Table 1.

Fig. 19: Angular correlation function evaluated for Patch 7 for Ncut = 3.5. The zero-lag value

is plotted at θ = 0.15
◦

, and numbers below 0.1 nW2m−4sr−1 are not shown. The filled circle shows

a from Table 1, normalizing a CIB correlation function with C(θ) ∝ θ−0.7. Diamonds show the

absolute value of the correlation function in the negative range.

Fig. 20: All-sky minimum fluctuation
√

q2P (q)/2π versus π/q. Shaded areas show the range

expected from Table 1, assuming the CIB power spectrum scales as q−1.3.

Fig. 21: Histogram of pixels surviving clipping at Ncut = 2 in the mid- to far-IR DIRBE

bands for 384 patches of 32 × 32 pixels. Solid line is Band 5, dots Band 6, dashes Band 7, and

dash-dots Band 8.

Fig. 22:
√

C(0) vs. cosec|b| for Bands 5-8 and Ncut = 2. Top panels are 90◦ < l < 270◦.

Lower panels are 90◦ < l < 270◦ and |βEcl| > 25◦.

Fig. 23: Upper panels are near-IR power spectra in for Patch 7. Lower panels are all-sky

minimum fluctuations
√

q2P (q)/2π plotted vs. the scale π/q. Plus signs are without clipping,

asterisks show Ncut = 7, and diamonds show Ncut = 5.

Fig. 24: Summary. Diamonds are values for a with 92% uncertainties from Table 1. Triangles

are for the color subtracted maps, shown at the mean wavelength for the two bands. The 1 − 2

limits are the left triangle and 3 − 4 the right. Dashes with arrows are upper limits in Bands 4-8.
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