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ABSTRACT

We present a new method for time-efficient and accurate extraction of the power

spectrum from future cosmic microwave background (CMB) maps based on properties

of peaks and troughs of the Gaussian CMB sky. We construct a statistic describing

their angular clustering - analogously to galaxies, the 2-point angular correlation

function, ξν(θ). We show that for increasing peak threshold, ν, the ξν(θ) is strongly

amplified and becomes measurable for ν ≥1 on angular scales ≤ 10◦. Its amplitude

at every scale depends uniquely on the CMB temperature correlation function, C(θ),

and thus the measured ξν can be uniquely inverted to obtain C(θ) and its Legendre

transform, the power spectrum of the CMB field. Because in this method the CMB

power spectrum is deduced from high peaks/troughs of the CMB field, the procedure

takes only [f(ν)]2N2 operations where f(ν) is the fraction of pixels with |δT | ≥ ν

standard deviations in the map of N pixels and is e.g. 0.045 and 0.01 for ν=2 and 2.5

respectively. We develop theoretical formalism for the method and show with detailed

simulations, using MAP mission parameters, that this method allows to determine

very accurately the CMB power spectrum from the upcoming CMB maps in only

∼ (10−4 − 10−3) × N2 operations.

Subject headings: cosmology - cosmic microwave background - methods: numerical
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1. Introduction.

By probing the structure of the last scattering surface, the current and upcoming balloon and

space borne missions promise to revolutionize our understanding of the early Universe physics.

This requires probing the angular spectrum of the cosmic microwave background (CMB) with high

precision on sub-degree scales, or angular wave-numbers l > 200. For cold-dark-matter (CDM)

models based on inflationary model for the early Universe and adiabatic density perturbations,

the structure of the CMB should show the signature of acoustic oscillations leading to multiple

(Doppler) peaks. The relative spacing of the Doppler peaks should then reflect the overall

geometry of the Universe, whereas the amplitude of the second (and higher) peaks depends

sensitively on other cosmological parameters, such as the baryon density, re-ionization epoch, etc.

The recent balloon-borne measurements (de Bernardis et al., 2000, Mauskopf et al 2000, Hanany

et al., 2000) strongly imply a flat cosmological model because the first Doppler peak occurs at

l ' 200 (Kamionkowski, Spergel & Sugiyama 1994, Melchiori et al 2000, Jaffe et al 2001).

A major challenge to understanding these and future measurements is to find an efficient

algorithm that can reduce the enormous datasets with N ' 105 pixels in balloon experiments

to ' 3 ×106 for MAP band with the 0.2◦ beam (at 90 GHz) to ' 108 for the Planck HFI data.

Traditional methods require inverting the covariance matrix and need ∼N3 operations making

them impossible for the current generation of computers. Thus alternatives have been developed

for estimating the CMB multipoles in O(N2) operations from Gaussian sky (Tegmark 1997; Oh,

Spergel & Hinshaw 1999) and general CMB sky (Szapudi et al 2000) as well as study statistics of

the various methods (Bond et al. 2000; Wandelt et al 2001).

In this letter we suggest a novel, accurate and time-efficient method for computing the angular

power spectrum of the CMB temperature field from datasets with large N using the properties of

the peaks (and troughs) of the CMB field. The peaks are much fewer in number than N , but they

will be strongly clustered. In Sec. 2 we construct a statistic describing their angular clustering -

the 2-point angular correlation function ξ in analogy to the galaxy correlation function (Peebles

1980), i.e. the excess probability of finding two peaks at a given separation angle. We show that
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this statistic is strongly amplified over the scales of interest (<10◦) and should be measurable.

The value of ξ for a given peak threshold |δT |≥ νσ would be uniquely related to the correlation

function of the temperature field C =〈δT (~x)δT (~x+~θ)〉. The measurement of ξ can then be uniquely

inverted to obtain the underlying C and its Fourier transform, the power spectrum Cl. This can

be achieved in just [f(ν)]2N2 operations, where f(ν) is the fraction of pixels with |δT |≥νσ and

is e.g. 4.5–1% for ν=2-2.5. Sec. 3 shows concrete numerical simulations for the MAP 90GHz

channel in order to estimate cosmic variance, sampling uncertainties, instrumental noise etc. We

show that with this method the CMB power spectrum is recovered to accuracy comparable to or

better than by other existing methods but in a significantly smaller number of operations. On an

UltraSparc II 450 MHz processor the entire sky map with 0.2◦ angular resolution can be analyzed

and Cl’s recovered in only 15 mins and 2.25 hours CPU time for ν =2.5 and 2.1 respectively.

2. Method

For Gaussian ensemble of N data points (e.g. pixels) describing the CMB data δ ≡ T − 〈T 〉

one expects to find a fraction f(ν) =erfc(ν/
√

2) with |δ| ≥ νσ, where σ2 = 〈δ2〉 is the variance of

the field and erfc is the complementary error function. E.g. f(ν)=(4.5, 1, 0.1)×10−2 for ν=(2,2.5,3)

respectively. The joint probability density of finding two pixels within dδ1,2 of δ1,2 and separated

by the angular distance θ is given by the bivariate Gaussian (the vector δ has components [δ1, δ2]):

p(δ1, δ2) =
1

2π
√

||C|| exp(−1

2
δ · C−1 · δ) =

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp(−iq · δ) exp(−1

2
q · C · q)d2q (1)

where C is the covariance matrix of the temperature field. We model the covariance matrix in (1)

as C(θ) = C0δij + C(θij)(1 − δij), where δij is the Kronecker delta and C0 ≡ C(0) + σ2
n; σn is the

noise contribution. We assume that the noise is diagonal, the entire CMB sky is Gaussian and the

cosmological signal whose power spectrum we seek is contained in C(θ) =
∑

(2l+1)ClPl(cos θ)/4π.

The total dispersion of the temperature field is then σ =
√

C(0) + σ2
n

The peaks of a Gaussian field should be strongly clustered (Rice 1954, Kaiser 1984, Jensen

& Szalay 1986, Kashlinsky 1987). The angular clustering of such regions can be described by

the 2-point correlation function, i.e. the excess probability of finding two events at the given
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separation. The probability of simultaneously finding two temperature excursions with |δT |≥νσ

in small solid angles dw1,2 is dP12∝(1 + ξ)dw1dw2. The correlation function of such regions is:

ξν(θ) =
2

∫ ∞
νσ

∫ ∞
νσ [p(δ1, δ2) + p(−δ1, δ2)]dδ1dδ2

[2
∫ ∞
νσ p(δ)dδ]2

− 1 (2)

The numerator follows from considering contributions from correlations between δ1, δ2 in regions of

1) δ1≥ν
√

C0, δ2≥ν
√

C0; 2) δ1≤−ν
√

C0, δ2≤−ν
√

C0; and 3) twice the contribution of δ1≥ν
√

C0,

δ2≤−ν
√

C0. The “2” in the denominator comes because we consider both peaks and troughs.

In order to evaluate (2) directly, we expand exp[−q1q2C(θ)] =
∑∞

k=0
[−C(θ)]k

k! qk
1qk

2 in (1) and

use the fact that
∫ ∞
−∞ exp(−ixy)F (x)xkdx = ik(∂k/∂yk)

∫ ∞
−∞ exp(−ixy)F (x)dx (Jensen & Szalay

1987, Kashlinsky 1991). Because
∫ ∞
−∞ exp(−iqδ) exp(−q2C0/2)dq =

√

2π/C0 exp(− δ2

2C0
) we get:

p(δ1, δ2) =
1

2πC0

∞
∑

k=0

[C(θ)]k

k!

[

∂k

∂δk
1

exp(− δ2
1

2C0
)

] [

∂k

∂δk
2

exp(− δ2
2

2C0
)

]

(3)

Substituting (3) into (2) allows to expand ξν(θ) into the Hermite polynomials,

Hn(x) = (−)n exp(x2)(dn/dxn) exp(−x2), to obtain:

ξν(θ) = Aν(
C

C0
) (4)

with:

Aν(x) =
1

H2
−1(

ν√
2
)

∞
∑

k=1

x2k

22k(2k)!
H2

2k−1(
ν√
2
) (5)

where H−1(x)≡
√

π
2 exp(x2)erfc(x). At each angular scale the value of ξν for every ν is determined

uniquely by C at the same θ. Note that in the limit of the entire map (ν=0) our statistic ξν=0

and our method becomes meaningless; the new statistic has meaning only for sufficiently high ν.

One should distinguish between the 2-point correlation function, ξ, we directly determine from the

maps, and the commonly used statistics in CMB studies, the temperature correlation function, C.

Fig. 1 shows the properties of ξν : the left panel shows the variation of ξν with C/C0 for

fixed ν and the middle panel shows the variation of ξν with ν for fixed C/C0. The first term

in the sum in eq. (5) contains H2
1 (∝ ν2), but as the middle panel of Fig.1 shows for sub-degree

scales (where |C/C0|> 0.1) ξν changes more steeply than ν2. This means that k >1 terms are
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important for accurate inversion of ξν in terms of Cl’s. The right panel shows ξν vs the angular

separation θ for ν=2 for two flat CDM models: ΛCDM model (thin line) with (Ωtotal,ΩΛ)=(1,0.7)

and Ωbaryonh2=0.03 and SCDM with (Ωtotal,ΩΛ)=(1,0) and Ωbaryonh
2=0.01 (thick line). The

first model has prominent Doppler peaks and baryon abundance in agreement with BBNS, the

second model requires significantly higher baryon abundance but has a much smaller second

Doppler peak. There would be non-linear to quasi-linear (and easily detectable) clustering of high

peaks out to the angular scale where C(θ) drops to only ∼0.1 of its maximal value at zero-lag.

This covers the angular scales of interest for determining the sub-horizon structure at the last

scattering. Because the uncertainty in measuring ξ is ∼N
−1/2
pairs (Peebles 1980), the value of ξ can

be determined quite accurately in non-linear to quasi-linear regime. At the same time, as the left

panel in Fig.1 shows, over this range of scales the amplitude of ξν changes rapidly with C making

possible a stable inversion procedure to obtain C(θ) from ξν .

This suggests the following procedure to determine the power spectrum of CMB in only

'f2(ν)N2 operations: • Determine the variance of the CMB temperature, C0, from the data in

N operations; • Choose sufficiently high ν when f(ν) is small but at the same time enough pixels

are left in the map for robust measurement of ξν(θ); • Determine ξν(θ) in [f(ν)]2N2 operations. •

Finally, given the values of (C0, ν) solve equation Aν(C/C0)=ξν(θ) to obtain C(θ) and from it Cl.

3. Numerical results and applications

In order to apply the proposed method in practice and to estimate the cosmic variance,

sampling and other uncertainties, we ran numerical simulations with parameters corresponding

to the MAP 90 GHz channel. The CMB sky was simulated using HEALPix (Górski et al 1998)

software with Nside=512 and Gaussian beam with FWHM=0.21◦ (or lNyquist=640) for the SCDM

and ΛCDM models. To this we added Gaussian white noise with the rms of 35µK per 0.3◦×0.3◦

pixel (Hinshaw 2000). We assumed that the foreground contribution at 90 GHz can be subtracted

to within a negligible term. Fig. 2 shows the SCDM model sky with both peaks and troughs with

|δ| ≥ ν
√

C0, ν=2, marked with white dots. The clustering of peaks/troughs is very prominent

especially on small scales, but the clustering pattern is very different between the models.
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To determine ξν we divided θ into 31415 equally spaced bins between 0 and 180◦ and the

number of pixel pairs, N12, with |δ| ≥ νσ, was oversampled and determined in each bin. This is

the dominant CPU time-consuming procedure of [f(ν)N ]2 operations. The ”raw” value of ξraw

was determined in each of the 31415 bins as ξraw=N12/Nrr − 1, where Nrr is the number of pairs

for a Poissonian catalog with the total number of pixels equal to the number of peaks and troughs

in our CMB sky. The final ξ was determined as follows: the angular interval between 0 and 180o

was divided into bins centered on the roots of the 800th order Legendre polynomial in order to

facilitate the later inversion of C(θ) into Cl’s via the Gauss-Legendre integration. The final ξ was

obtained from ξraw by convolving the latter with a Gaussian filter of 4’ dispersion centered on each

of the 800 Legendre polynomial roots. The value of thus obtained ξ(θ) is shown for one realization

of the two CDM models in the right panel of Fig.1; it agrees well with eqs. (4,5).

Having fixed ν and determined C0 from the map we now solve the equation ξν(θ)=Aν(C(θ)/C0)

with respect to C(θ) with Aν given by eq.(5) and determine C(θ) at each of the roots of l=800

Legendre polynomial. In the final step the multipoles were determined by direct Gauss-Legendre

integration of Cl=2π
∫

C(θ)Pl(cos θ) sin θdθ. At θ >10◦, where ξν is very small and hard to

determine (see Fig.1c), our recovered C(θ) has larger uncertainties. Because we are interested in

high l multipoles the recovered correlation function C(θ) was further tapered above 15◦. (At l of

interest the results are insensitive to details of tapering). To check the statistical uncertainties in

the determination of Cl’s we ran 700 simulations for ν=2.5 and 350 simulations for ν=2.1.

Fig. 3 shows the results of the numerical simulations for SCDM model with the instrument

noise of the MAP 90 GHz channel. The distribution of the multipoles determined from the

simulated maps in this method is shown in Fig. 3a,b for l=200 (the first Doppler peak), l=350

(the first trough) and l=475 (the second Doppler peak for SCDM model). The best-fit Gaussians

are shown with smooth lines; they give good fit to the histograms at high l. The 68% confidence

limits on Cl’s are very close to the dispersion of the best-fit Gaussians shown and the 95% limits

are roughly twice as wide for all l’s as would be the case for approximately Gaussian distributions.

Fig. 3c shows C(θ) determined by our method from one realization for ν=2.1 (solid line)
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and ν=2.5 (dashes). Dotted line shows the theoretical C(θ)=
∑

(2l + 1)ClPl(cos θ)/4π with

SCDM values of Cl’s. The C(θ) determined with our method is within 5% of the theoretical

value. This uncertainty is within the cosmic variance of small-scale C(θ) from low-l contribution

(predominantly quadrupole) which is ∼ 500µK2 (Bennett et al 1996, Hinshaw et al 1996).

Finally, Fig. 3d shows our full sky determination of the CMB power spectrum from the

synthesized SCDM maps. Solid line shows the theoretical (input) spectrum juxtaposed with the

power spectrum determined with the peaks method for ν=2.1 (diamonds) and 2.5 (crosses). The

latter was band-averaged into ∆l=50 wide bins and the symbols are plotted at the central bin value

+/– 5 for ν=2.5/2.1 respectively to enable clearer display. Band power averaged over larger ∆l will

have less variance but will give fewer independent data points. In computing the band-averages

we gave equal weight to all multipoles. This top-hat window function is not an optimal estimator

of the power spectrum (Knox 1999). However, we checked that with this window function, the

multipoles at the different l-bins were not correlated. The shown uncertainties correspond to the

dispersion from the Gaussian fits to the distributions and are very close to the 68% error bars

which are approximately half the 95% errors. With our method for ν=2.1 we recover the power

spectrum with variance only 1% larger than the full-sky cosmic variance limit at the central l at

the first Doppler peak (l=200), 2% larger at l=350 and 8% larger at the second peak (l=475). We

compare the uncertainty of our numbers to the full-sky cosmic variance which is, excluding the

noise, ∆Cl=
√

2/(2l + 1)Cl. Note that for our method we simulated the two-year full-sky MAP 90

GHz channel, so our assumed noise is ∼100µK per 7’ pixel with the FWHM=12.6’ beam, i.e. twice

that assumed in Szapudi et al (2000) with the FWHM=10’ beam who obtain a similar accuracy

with direct computation of C(θ) for a small BOOMERANG-size patch of the sky. At l≤ lNyquist of

the beam our method determines Cl’s without bias. The accuracy of our method for a given ∆l

can be further improved by going to ν <2.1, but increasing somewhat computational time (e.g. for

ν=2 the computational time will increase by 60% over ν=2.1).

4. Conclusions

We introduced here a new statistic, ξν , and showed that with it one can recover the power
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spectrum from Gaussian CMB maps in a very accurate and time-efficient way. We have shown

that for peaks and troughs of such temperature field, their angular 2-point correlation function,

ξν , would be strongly amplified with increasing threshold ν and would be measurable. Because

its amplitude at a given angular scale depends on the amplitude of the temperature correlation

function, C, at the same scale, the former is then inverted to obtain the power spectrum of the

CMB. The method requires [f(ν)N ]2�N2 operations. For balloon experiments it would work for

ν∼1–1.5 or in (10−1−10−2)N2 operations, for MAP highest resolution with ∼3×106 pixels it can

work at ν'2–2.5 or in (2×10−3−1.5× 10−4)N2 operations and for higher resolution maps, such as

Planck HFI maps, still higher ν can be used leading to accurate results in <10−4N2 operations.

We demonstrated with simulations that for the two-year noise levels for MAP 90GHz channel with

this method we can recover the CMB multipoles with ν=2.1, or in 1.2×10−3N2 operations, out to

lNyquist with uncertainty only a few percent larger than the full-sky cosmic variance. We assumed

a diagonal noise covariance matrix, but the method can be extended to another Gaussian noise

provided its covariance matrix is known. Because here we work with the correlation functions, our

method is immune to geometrical masking effects e.g. from Galactic cut and other holes in the

maps. This means that we can remove regions where the foregrounds are very bright, or the noise

inhomogeneity is too high. With the exception of isolated areas, the MAP noise variations are

expected to be ∼10–15% over the cut sky (Hinshaw, private communication). Because σ2
n�C(0)

such variations would lead to only small variations in the effective ν. The method applies to

Gaussian CMB sky which is expected in conventional models. If the CMB sky turns out to be

non-Gaussian, our method may not be applicable, or may need substantial modifications by e.g.

looking at ξν for peaks and troughs separately.

We acknowledge fruitful conversations with Gary Hinshaw and thank Keith Feggans at NASA

GSFC for generous computer advice and resources. C.H.M. and F.A.B. acknowledge support of

Junta de Castilla y León (project SA 19/00B) and Ministerio de Educación y Cultura (project
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FIGURE CAPTIONS

Fig. 1: (a) ξν vs C/C0 for ν = 0.5, 1, 1.5, 2, 2.5, 3 from bottom to top. (b) ξν vs ν for

C/C0 = 0.1, 0.2, 0.3, 0.5, 0.75, 0.95 from bottom to top. (c) ξν vs θ for ν = 2 in one realization of

the two CDM models: Plus signs correspond to ξ determined directly from one simulated map of

ΛCDM with FWHM=0.21◦ resolution and the noise corresponding to the 90 GHz MAP channel;

diamonds show the same for SCDM. Thick and thin solid lines show the values of ξ(θ) from eqs.

(4,5) for SCDM and ΛCDM respectively.

Fig. 2: All sky distribution of pixels with ν=2 for SCDM model.

Fig. 3: (a), (b) Histograms of the recovered Cl’s for l=200, 350 and 475 are shown for

ν=2.5 (top) and 2.1 (bottom). Smooth lines show the best-fit Gaussians to the histogram data.

(c) C(θ) vs θ for SCDM model: theoretical value is shown with dotted line. The values for one

realization are shown with solid (for ν=2.1) and dashed (ν=2.5) lines. (d) Cl vs l for SCDM

model. Solid line corresponds to the theoretical input value. The spectrum recovered with our

method from simulated 90 GHz MAP maps is shown after band-averaging with ∆l=50 with filled

diamonds (ν=2.1) and crosses (ν=2.5). To enable a clearer display the central values of multipoles

are shifted by 5 to the left for ν=2.1 and to the right for ν=2.1. The error bars correspond to

the dispersion of the Gaussian fits such as as shown in Fig.3a and practically coincide with 68%

confidence limits which in turn are approximately half the 95% limits.
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Fig. 1.—
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Fig. 2.—
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Fig. 3.—


