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ABSTRACT

We outline a new method for estimating the cosmic infrared background
using the spatial and spectral correlation properties of infrared maps. The cos-
mic infrared background from galaxies should have a minimum fluctuation of
the order of 10% on angular scales of the order of 1°. We show that a linear
combination of maps at different wavelengths can greatly reduce the fluctuations
produced by foreground stars, while not eliminating the fluctuations of the back-
ground from high redshift galaxies. The method is potentially very powerful,
especially at wavelengths where the foreground is bright but smooth.

1. INTRODUCTION

Diffuse background radiation fields contain information about the entire
history of the universe, including those periods in which no discrete objects
exist or can be detected by telescopic study. The cosmic infrared background
(CIB) should contain much of the luminosity of the early generations of stars
and galaxies, since the cosmic expansion redshifts the wavelength of peak lumi-
nosity from these sources from the UV and visible bands into the infrared. In
addition, dust absorbs much of the original UV luminosity and re-emits it in the
IR. The CIB therefore contains important information about the evolution of
the Universe between the redshift of last scattering (probed by the microwave
background) and today (probed by optical surveys).

The CIB has still not been discerned in the sky brightness data measured
by the COBE Diffuse Infrared Background Experiment (DIRBE), which was de-
signed for the purpose, because it is hard to distinguish the CIB from foreground
sources such as interplanetary and interstellar dust, and stars. Extrapolations
of galaxy counts clearly predict a near IR CIB well above the DIRBE noise level.
The most direct analysis of the DIRBE data gives the limits on the CIB derived
from the darkest parts of the sky (Hauser 1995). At the DIRBE J, K, and L

bands they are respectively vI, = 393 £ 13, 150 & 5, and 63 & 3 nW m~2sr~ L.
The latest attempt by the DIRBE team to account for foreground emission is
reported by Hauser (1995), giving residuals for these bands ranging from 50 to
104, 15 to 26, and 15 to 24 nW m~2sr~! respectively.

An alternative detection method was suggested by Gunn (1965) based on
the correlation properties of the diffuse backgrounds. It was successfully applied
by Shectman (1973, 1974) in the V' band and Martin and Bowyer (1989) in
the UV. Indeed, if it comes from the redshifted light emitted by galaxies, the
diffuse background must show fluctuations to reflect the correlation properties
of galaxies.

We present here an overview of this study: section 2 gives a brief theo-



retical background for the method, data analysis is presented in section 3 and
we conclude in section 4. More details and final numbers will be found in our
forthcoming paper (Kashlinsky, Mather, Odenwald, and Hauser 1995; hereafter
Paper I).

2. THEORETICAL PRELIMINARIES

If the primordial density fluctuations were (Gaussian as most theories as-
sume, then the three-dimensional spatial correlation function, £(r) determines
all properties of the primordial density field. £(r) has now been measured to

large distances ( < 100h~!Mpc ) in the B; (Maddox et al. 1990; hereafter the
‘APM’ survey) and r bands (Picard 1991; hereafter the ‘Palomar’ survey). These
estimates are consistent with other measurements of the mass distribution (cf.
Kashlinsky 1994 and references therein), although there is no proof that all types
of dark matter follow luminous matter. While deeper than before, the APM and
Palomar surveys map the galaxy distribution at rather low redshifts (the APM
survey limit is by = 20.5, and the Palomar survey limit is r = 19).

The three-dimensional correlation function is not directly observed in two
dimensional maps. We therefore consider the projected two dimensional corre-
lation function as a directly observable quantity. For diffuse light, the projected
2-D correlation function between fluxes in two different wavebands Ay, Ay is de-
fined as Cx, x,(0) = (M1, (x)- A261x,(x+0)), where 61 = I — (I). It is related
to the underlying 2-point correlation function via the analog of the Limber equa-
tion, which in the limit of small angles § < 1 reads:

(e.@)

Cxx,(0) = /Oo dz[a/\lf,\l/az][a/\gf,\Q/ﬁz]/ dA&(ri2;2), (1)

— o0

where A = (23 — 21), riy = (Acdt/dz)? + 2?(2)/(1 + 2)26?, and z(z) = ¢ [ (1 +
z)dt is the comoving distance to z.

The angular scale of the DIRBE beam probes comoving linear scales of
< 20—307~'Mpc for the range of redshifts contributing to the bulk of the (near)
IR extragalactic flux. On these scales, the correlation function implied by the
APM survey can be approximated as a power law of slope v+ 1 ~ 1.7. Thus as
6 — 0 we can model £(r;2) as &(r;2) = (r/ry) "1~ 7¥?%(2), where r, = 5.5~ Mpc
and the function ¥(z) accounts for the evolution of the clustering pattern, and
is defined to be unity for z = 0. This leads to a predicted zero-lag correlation
signal (mean square deviation) seen by DIRBE with the top-hat beam of:

[B(2)S(:2) W) Ria(1 + 2)
(1 +2VI+0:] - 2(2)

where C'(0) is in W2m™*sr™2, Qx = Afa(A;0)/AXgfa(Ap;0). Here Ap and AXp
refer to the B band filter wavelength and bandwidth used to define the galaxy
luminosity functions. For galactic spectra and galaxy type mixes adopted from
Yoshii and Takahara (1988) we get @7y = 8.9, Qx = 3.8, @, = 1.7 for the
J,K,L bands. D is the beam dilution factor which for circular top-hat beam
and v = 0.7 is D(v) ~ 1.4. We evaluated the effective radius of a circular beam
corresponding to the DIRBE instrument to have radius ~0.45°, after accounting

C(0) = 1.6 x 10—19DQ§/ 1°7dz (2)



for the effects of the beam shape, the beam scanning during the observation
time, the pixelization process, and the attitude errors. E(z) and S(A, z) are the
evolution parameters and are defined in Paper I. Thus we expect the zero-lag
signal to be near Cy(0) ~ 1072(\Iy)?.

Even if the data do not allow a detection, this method allows translation
of an upper limit on C(0) into an upper limit on the total flux in that band. To
see how the measurements of the correlation signals constrain the levels of the
background it is illustrative to rewrite the above equation as:

C(0)=36x10"? /(d)\I,\/dt)2\I/Z(t)(RH/r)’YHO_ldt (3)

where t is the cosmic time and r = 2 2)/(1 + z). In the Friedman-Robertson-
Walker Universe the ratio of [r(z)/Rp]” reaches a maximum of 0.45 at z ~ 1.5.
The value at the maximum is almost independent of 2 being 0.43 for 2 = 0.1
and 0.47 for = 1. This translates into [Rg/r(z)]” > 2.2. Thus any detection
of the cosmological C'(0) or an upper limit on it would set an upper limit on the
rms z-gradient of the total flux of

(d;f)rms - \/ / (AN /dz2dz < 11,/C(0). (4)

To relate this z-gradient to the total flux requires a model for the z dependence
of dA\I)/dz. Reasonable classes of models based on recent galaxy formation
(z of a few) give the ratio of A\ to the z-gradient of the order of unity, and
any specific model can be evaluated easily. This method allows for a simple and
efficient way of constraining the CIB from material clustered like galaxies, based
on the measurements of the mean square deviation in the DIRBE maps.

In the conventional DIRBE analysis one derives upper limits from the DC
component of the signal, using various methods for modeling and subtracting
the smooth and discrete foreground sources. As eq. (4) shows the correlations
method could be quite efficient when the foreground emission is very bright
but homogeneous. This is typically the case in wavebands longward of the
ones considered here, where zodiacal light dominates stellar emission. The two
methods measure different quantities, one depends on foreground models and one
on background models, and both provide valuable constraints on the processes
of galaxy formation, evolution, and spatial clustering. The analysis at these
longer wavelengths will be presented in a future paper. Nevertheless, applying
the techniques in the near-IR already gives interesting results.

3. DATA REDUCTION

We analyzed data from the three shortest wavelength bands observed by
DIRBE, which approximate the ground-based photometric bands J, K, L, at
1.25, 2.2, and 3.5 microns. We selected four fields of 128 x 128 pixels, or 38.5 x
38.5°, located outside the Galactic plane, |b'/| > 20°. Two fields are located
in the Ecliptic plane and two near the north and south Ecliptic poles. We also
studied the same five fields that are used in setting the strongest current limits
on CIB (Hauser 1995): four fields are 32 by 32 pixels in size (10° by 10°) and
are centered on the two ecliptic (hereafter referred to as SEP and NEP) and



two galactic (SGP and NGP) poles. The fifth field is 5° by 5° (16 by 16 pixels)

and is centered on the Lockman hole (hereafter LH), the region of the minimum

HI column density at (I,b) = (148", +53°) (Lockman et al 1986). We analyzed
two versions of these maps. Map A was constructed by interpolating the data
from 4 consecutive weeks of observation to a constant solar elongation of 90°,
thus reducing the effects of the variation of the zodiacal light with time. Map
B was the grand average of all 42 weeks of observations, as delivered to the
National Space Science Data Center (Leisawitz 1995), with the DIRBE model
of the zodiacal light subtracted directly (Reach et al. 1995; Franz et al. 1995).
The model uses the time dependence of the measured sky brightness as the
unique signature of the zodiacal light.

A measurement of C(0) must satisfy three criteria to be considered a firm
detection. First, it must be isotropic to a high degree. Second, it must have a
level significantly above the random noise levels from the instrument and data
processing. The spatial power spectrum of the fluctuations must be consistent
with an origin outside the instrument and data reduction process. Third, it
must be clear that it can not be produced by foreground sources. It must not be
spatially correlated with foreground sources like the Galactic or ecliptic plane,
or the local supercluster. Even without passing all these tests, the measured
limits on C(0) and their implications for the clustered part of the CIB are still
very interesting as an example of this promising method.

We now describe two steps that were applied to reduce the effects of the
zodiacal and stellar foregrounds from the DIRBE maps: discrete source masking,
and color subtraction.

Except near bright objects like the Large Magellanic Cloud or the Galactic
Plane, the appearance of each map in the selected J, K, L bands is characterized
by a large number of bright point sources, mostly known stars, situated on a
smooth distribution. For purposes of estimating the properties of the CIB we
must eliminate the contribution from the discrete foreground as well as possi-
ble. Each field was processed by an iterative background modelling and source
removal program developed by the DIRBE team. The smooth component was
modeled as a 4th-order polynomial surface, which was fit to the entire field after
application of a 5 x 5-pixel spatial filter. Pixels with fluxes greater than N
standard deviations above the fitted background model were blanked, as were
the surrounding 8 pixels. In other words, each star was assumed to occupy a
3 x 3-pixel region 0.97° square, a factor of ~ 2 larger in area than the nominal
DIRBE beam size of 0.7° square.

The procedure was repeated for the remaining non-blanked pixels in the
map until no further points were masked by the algorithm. The background
model was recomputed for the non-blanked pixels in the field, and the blanking
process performed again at the same clipping threshold factor, N.u¢. Since the
clipping threshold is defined by a factor relative to the standard deviation of the
residuals of the remaining pixels, it changes with each iteration and is slightly
different for different values of N.y¢. This process was iterated until no new
peaks were identified in the current map iteration. Because this process does
not actually subtract a background from the data at each step in the iteration,
the final product is a sky map containing all of the original low spatial frequency
background information, but in which bright points sources have been deleted
by blanking their pixels. We tested cutoff thresholds of N+ = 3.5, 5, and T;
at lower clipping thresholds we have too few pixels remaining to allow for a
meaningful analysis.

After the masks were created individually for all three bands, a combined



mask was made so that only those pixels which were considered valid for all
three bands would be used for further analysis. This step guarantees that the
data are consistent for all the bands and for the color-subtracted analysis to be
described below.

We examined the histograms of the fluctuations for each field and map
and value of N¢yi. We found the following expected effects. The histograms are
quite skew, with a high-intensity tail falling off roughly as dN/déI o« §15/2,
in accord with the prediction for stars filling infinite space uniformly. The low-
intensity side of each histogram drops abruptly, since it is very improbable for
no stars to be found in the large DIRBE beamwidth. If the beamwidth were
only 1 arcminute, the result would be very different. Histograms for Map A, for
which the zodiacal light model has not been subtracted, show double peaks for
regions near the ecliptic plane. In Map B, all the fields give histograms with
roughly comparable widths, as expected if the stellar foreground fluctuations are
roughly the same for regions all at high galactic latitude. The measured width
of the central part of the distribution is moderately sensitive to the clipping
threshold used. We find that Ny = 3.5 is the lowest value where enough
pixels still remain for proper analysis, because each deleted pixel also removes
its 8 neighbors. The measured dispersion or C(0) is still far too anisotropic
to be interpreted as cosmological, but can be used to give upper limits. To
obtain much lower values would require very careful analysis of the observational
noise, the stellar foreground fluctuation contributions, and the detailed response
properties of our nonlinear analysis algorithms.

The signal from the foreground radiation may also be disentangled from
that of galaxies by considering the properties of the foreground stellar emission
that are different from the CIB. The extragalactic objects have somewhat differ-
ent colors than the Galactic stars, and they are redshifted as well. Furthermore,
galaxies of different morphological types have different stellar populations and
this too should help distinguish the colors of the foreground emission from our
Galaxy (type Sc) from those of more representative galaxies (E/SO, Sa, etc.)
which are expected to dominate the CIB at J, K and L-bands.

On the other hand the near-IR DIRBE maps exhibit a clear color with a
relatively small dispersion. We define the color between any two bands, 1 and
2, as ayp = I; /I;. Within each field the dispersion of colors is small, between
5% and 10%. The colors confirm that most of the light of the Galaxy in these
bands comes from K and M giants (Arendt et al. 1994).

This empirical property of the constancy of color found in the DIRBE
near-IR maps can be used to reduce the foreground contribution to C(0) by
taking the scaled difference of two maps. On the other hand, as discussed above
most CIB in the near-IR is expected to come from galaxies whose spectra are
significantly redshifted and thus the CIB is not expected to be washed out by this
procedure. These observations are the basis for the color subtraction method
we present below.

There are two independent contributions to the measured fluctuations in
the linear combinations of the DIRBE maps: the one that comes from the total
foreground (stars, zodiacal light, and cirrus), which we denote as Cy A(0), and
the one that comes from the extragalactic background which we label Cy A(0).
We use the A notation to indicate that these variances refer to the differences
of maps at two different wavelengths. The total Ca(0) is the sum of these
two components. Let us assume that the Galactic and zodiacal foreground
component has the mean color between any two wavelengths 1 and 2 of Sy = («)

and the dispersion in the color is s2, = ((6a)?), where éa is the deviation of



the pixel color from the mean of the pixels in the field. Assuming that the color
fluctuations are uncorrelated with the intensities, the zero-lag signal due to the
foreground in Band 1, C, 1(0), can be written as

Ci1(0) 2~ (ST, + 575)Cy 2(0) + 575 (Li 2)°. (5)

Note that the approximations used in this equation are not required for the
validity of the analysis of the maps, but are only to indicate that major im-
provements are achievable with color subtraction. Let us construct the quan-
tity which depends on the parameters in two bands (we define é; = I, — (I;)),
Ay 12 = 64,1 — Fb4 2, where the quantity 3 is for now an arbitrary number which
will be quantlﬁed Tater. The zero- lag 31gna1 in the “color-subtracted” quantity
defined above would be given by

Cua(0) = (AL 12) = [(S12 = B)" + 515]C2(0) + 575 (L 2)". (6)

It is clear from the above that if we were to choose 3 close to the mean color for
the foreground,  ~ Sy, then the largest term in Eq.(6) could be made nearly
zero and the contribution of the Galactic foreground confusion noise to the zero-
lag signal Cy A(0) in the difference map would be minimized. Furthermore, if
s < S, that contribution can be decreased over the one specified in Eq.(5) by a
fairly substantial amount.

Measurement shows that indeed we have s < §. Thus the variance in the
color-subtracted fluctuation A due to the confusion noise can be reduced by a
substantial factor, with a minimum when 3 = Sy2. The plots of Ca(0) for the
data from all five fields as a function of 3 for J— K, J— L and K — L subtraction,
for map B and N,y = 3.5 show that the minimum of C'A(0) is indeed quite deep.
Therefore, in constructing the color-subtracted quantities we use the values of 3
for each field that correspond to the minimum of Ca(0). Unlike the single band
zero-lag signal, which would correspond to § = 0, the minimum of CA(0) is
distributed significantly less anisotropically. The major anisotropy in the colour
subtracted signal comes from the SEP field. This field, however, contains the
LMC galaxy and it is fair to exclude it from further discussion of the colour
subtracted signal.

The color subtraction works well to suppress the fluctuations due to the
Galactic foreground. On the other hand the predicted extragalactic background
fluctuations are unlikely to be removed by the color subtraction method because
the redshifts give the background a different color than the foreground. The
extragalactic signal would change by a different amount, and may even increase
because of the combination of redshift and morphological effects. This can be
shown explicitly using eqs.(2)-(4) and is discussed in more detail in our Paper
I. Since the Galaxy colors are typical of general stellar populations our method
effectively reduces the contribution from the nearby galaxies, but because of the
redshift effects on galaxies the overall zero-lag signal remains at the levels of the
single band cases. In other words, the color subtracted signal probes galaxies in
a window of redshifts centered on an early epoch. The distant galaxies do not
have a single color, and can not be removed by the color subtraction.

4. CONCLUSIONS

We have tested a promising method for recognizing the contribution of
high-redshift galaxies to the cosmic infrared background, using their spatial and



spectral correlation properties. These are different from the foreground stars,
which have a single dominant color with small dispersion. Bright foreground
stars can also be eliminated by simple masking techniques. We prepared linear
combinations of maps at different wavelengths and adjusted the coefficient to
minimize the resulting variance. The residuals are much smaller than those of the
single band maps, and are much more isotropic. Theoretically, the fluctuations
of the CIB should have different colors from the foreground stars and should
still be detectable in these linear combination maps.

Even the single band fluctuation limits can be interpreted as (model-
dependent) limits on the CIB originating in material clustered like galaxies.
In the J, K, L bands, with reasonable galaxy evolution models, they are sig-
nificantly lower than direct estimates of the upper limits on the CIB derived
from the DIRBE maps and are comparable to the residuals in the direct sky
brightness analysis (Hauser 1995).

There is still work to do in identifying the sources for all of the measured
fluctuations. We have demonstrated that the instrument noise is quite small in
the single band maps, but not negligible in the analysis of the color subtracted
maps. The possible sources for such fluctuations could be the long-sought CIB,
the residuals of the foreground star fluctuations, or effects of patchy dust ab-
sorption. A spatial power spectrum analysis is needed to show which of the
above contributes to the detected signal.
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