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ABSTRACT

We propose a new method to measure the possible large-scale bulk flows in the
Universe from the cosmic microwave background (CMB) maps from the upcoming
missions, MAP and Planck. This can be done by studying the statistical properties of
the CMB temperature field at many X-ray cluster positions. At each cluster position,
the CMB temperature fluctuation will be a combination of the Sunyaev-Zeldovich (SZ)
kinematic and thermal components, the cosmological fluctuations and the instrument
noise term. When averaged over many such clusters the last three will integrate
down, whereas the first one will be dominated by a possible bulk flow component. In
particular, we propose to use all-sky X-ray cluster catalogs that should (or could) be
available soon from X-ray satellites, and then to evaluate the dipole component of the
CMB field at the cluster positions. We show that for the MAP and Planck mission
parameters the dominant contributions to the dipole will be from the terms due to the
SZ kinematic effect produced by the bulk flow (the signal we seek) and the instrument
noise (the noise in our signal). Computing then the expected signal-to-noise ratio for
such measurement, we get that at the 95% confidence level the bulk flows on scales
> 100h~'Mpc can be probed down to the amplitude of < 200 km/sec with the MAP

data and down to only ~ 30 km/sec with the Planck mission.

Subject headings: Cosmology: Cosmic Microwave Background. Large Scale Structure.

Galaxies: Clusters.



1. Introduction.

Peculiar motions trace the overall mass distribution and it is important to determine the coherence
scale and amplitude of bulk flows. Current measurements range from bulk flows as high as 700
km/sec on scale of ~150h~!Mpc (Lauer & Postman 1994) to finding little peculiar motion on
scales beyond ~70h~'Mpc (see Willick 2000 for review). It is thus important to find alternative
ways to test for such bulk flows. One alternative way to measure peculiar flows is via the kinematic
Sunyaev Zeldovich (SZ) effect produced on the cosmic microwave background (CMB) photons
from the hot X-ray emitting gas in clusters of galaxies (Zeldovich & Sunyaev 1969). Such program
is already being undertaken in the SuZIE project which plans to measure motion of 40 clusters at

2=0.1-0.3 and determine the peculiar velocity of each cluster to a precision of 700 km/sec.

In this letter we propose to use CMB data from the MAP and Planck missions to measure the
bulk flows in a quick, cheap and efficient way. X-ray cluster catalogs to be available shortly based
on ROSAT, ASCA and XMM measurements, will provide locations of the SZ sources on the CMB
sky and a reasonable estimate of the cluster electron density distribution and temperature. If there
are significant bulk motions they will leave an imprint via the cumulative kinematic SZ effect and
can be uncovered by cross-correlating the temperature field at the cluster positions in the MAP
and Planck CMB maps. Such bulk motions would produce a significant dipole component in the
temperature field evaluated at the cluster locations. By averaging temperature fields at enough
cluster positions, the thermal SZ and other noise components will integrate down enough to reveal

possible bulk motions out to ~ 300-400 km/s on scales >50-100h~Mpc.

2. Dipole of the cumulative SZ kinematic effect.
Consider the CMB field at a beam centered on one isothermal X-ray emitting cluster at the
angular position ¢. If the cluster is moving with the line-of-sight velocity v, with respect
to the CMB rest frame, the SZ CMB fluctuation at frequency v at this position will be
80 (9)=0un (§) G (V) +0kin (§) H (v), with 01, =TTyiria1/Te,ann and dgin=7v,/c (e.g. Phillips 1995). Here
T is the projected optical depth due to Compton scattering, Tyirial is the cluster virial temperature

and kpTe ann=0.5 MeV. (For expressions for the spectral dependence of the two SZ components,
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G(v),H(v) see e.g. Birkinshaw (1999).) Normally the thermal term dominates for individual
clusters, but if averaged over many clusters moving at a significant bulk flow with respect to the
CMB rest-frame, the former will integrate down o< 1/Njyster, while the kinematic term will reflect

coherent motions with amplitude Vjyy.

In order to minimize the contribution from other sources, we will start with CMB maps from
which the cosmological dipole component was subtracted down to o4. This uncertainty is already
oq = TuK (Fixsen et al. 1996) and should be significantly smaller in MAP observations. The MAP
radiometers produce a raw temperature measurement that is the difference between two points on
the sky ~ 140° apart which introduces an error on the dipole determination, due to correlated
noise, of the order of 0.1uK; the dominant uncertainty in the dipole will be due to confusion from
the galactic foreground (G. Hinshaw, private communication). After the cosmological CMB dipole
subtraction the CMB fluctuation in band v at position % centered on a known X-ray cluster will be
0, (9)=0tn (1) G (V) +[0kin (¥)+dcmB (§)| H (v)+7r(v). Here r(v) is the instrument noise at frequency
v and dcmp(Y) is the cosmological CMB component whose dipole is now 03. Consider the dipole
component of d, () with the dipole amplitude Cy normalized so that a coherent motion at velocity
Vbuik would lead to the dipole amplitude of Vb2ulk /c?. When computed from the total of Ngjuster
positions the dipole of the noise term becomes <T2(V)> /Neluster- The cosmological signal gives rise
to two different dipole contributions: 1) the cosmological dipole has not been perfectly removed so
the temperature anisotropies at the cluster locations sample the residual dipole o4; and 2) even if
all the cosmological dipole had been removed the intrinsic CMB temperature anisotropies could
be seen as an extra dipole noise source. The latter contribute J%MB /Nelusters With ocump being
the variance of the cosmological temperature field on the smallest angular scales probed by the

experiment. Thus for Ngjyster > 1 the dipole of (3) becomes:
Crp =~ Cl,kinH2(V) + Cl,thG2(V) + [U%MB/Ncluster + 03]H2(V) + <r2(V)>/Ncluster (1)
where it was assumed that for each individual X-ray cluster the thermal SZ term dominates.

3. Signal and noise terms.

We now estimate the amplitude of the signal, C} g, and noise terms in eq. ([l)).



3.1. Kinematic component.

2
2 nglk

Assuming that cluster properties are independent of their velocities, this term is C 4, =1 2(1;) 2

Ty is the CMB temperature, and ¢ refers to the frequency band. The effective optical depth
is affected by the beam dilution. To evaluate the expected mean optical depth accounting for
the beam dilution effects we proceed as follows: for X-ray clusters the electron density profile
can be approximated by the S-model. For isothermal and spherical X-ray gas distribution,
the optical depth as a function of the angular distance from the cluster center would be

7 =1(1 +62D?/ rgore)_$. Here D is the distance to the cluster and 7o is its core radius. For
each individual cluster observed in a CMB search, this expression needs to be convolved with the
beam profile. The effective optical depth becomes 7; = 79W;(D), where ¥; accounts for the beam
dilution effects. To evaluate ¥;(D) we compiled a list of 37 X-ray clusters with measured [, rcore
and 2.4 KeV<T<14.6 KeV from Arnaud & Evrard (1999), Myers et al. (1997) and Neumann &
Arnaud (1999). We then computed ¥;(D) for each individual cluster and the mean and the r.m.s.
in ¥,;(D) evaluated over the ensemble of clusters. Fig.1 plots the mean and the r.m.s. values of
U,;(D) vs D for the largest and smallest MAP beams. The figure shows that for the purposes of

estimating the magnitude of the kinematic dipole component we can assume that a “universal”

profile for the cluster optical depth exists to within an uncertainty of ~10-20%.

The value of (19) can be estimated from the observed cluster properties and their X-ray
luminosity function. Cooray (1999 - Table 1) compiled a list of 14 X-ray clusters with
measured SZ thermal components, ATgy, with the X-ray luminosity in the [2-10] KeV range,
Lx(2-10 KeV), between 1.6x10% and 3.6x10*°h~2erg/sec. A linear regression fit to the data
gives 70=(4.841.0)x1073[Lx (2-10KeV)/10** h~2erg/sec]®” with a,=0.4140.12. Note that for
isothermal X-ray clusters emitting due to thermal Bremsstrahlung, Lx o ngTvlifal, and obeying

the observed X-ray luminosity - temperature relation, LxoxT): .

Scharf 1997, Allen & Fabian 1998, Arnaud & Evrard 1998), one expects TocL* (e.g. Haenhelt &

| with y~2.5 (Mushotzky &

Tegmark 1996). These relations show little evolution out to z~0.5 (Mushotzky & Scharf 1997;

Schindler 1999) and are valid for cluster catalogs of depth <200h~!Mpc needed for this project.
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The mean optical depth can now be computed from measurements of the X-ray luminosity
function (XLF). XLF has now been determined very accurately from the ROSAT BCS sample out
to 2<0.3 (Ebeling et al., 1997). The sample is 90% complete for fluxes >4.45x107!2 erg/cm? /sec in
[0.1-2.4] KeV band. The XLF is of the Schechter type n(Lx)dLx=n.(Lx/L«)*X exp(—Lx/Ly)dLx
with ay~—1.8 and bolometric L,~9.3x10*h~2erg/sec or L.(2-10 KeV)~3.2x10*h~2erg/sec.
For these XLF parameters and V;,,=600 km/sec and a constant lower limit on the absolute
X-ray luminosity Lo~5x1073L,, corresponding to the [0.1-2.4]KeV flux 4.5x10712 erg/cm? /sec at
50h~'Mpc, we get /C71,~9uK dropping to ~6uK for Lo~2x1073L,.

3.2. Thermal component
The residual dipole from the SZ thermal component comes from the finite number of Poisson-
distributed X-ray clusters and would integrate o< 1/Nguster- Since cluster properties are

independent of position, the dipole contribution is Cy 4,~((ATsz))*D? Here ((ATsz)) is

cluster
the mean amplitude of the thermal SZ temperature fluctuation produced by the observed X-ray
clusters and Dejyster=(cos #), with 6 being the cluster azimuthal angle, is the mean dipole of the
cluster distribution out to the depth on which the bulk motions are probed. Assuming the scaling
of 7 vs Ly above and integrating it over Ly >Lo=const gives ((ATsyz))=12uK for Ly=0.002L.
and ((ATsz))=20uK for Ly=0.005L.. We used the Abell/ACO catalog (Abell 1958, Abell,
Corwin & Olowin 1989) to verify that the angular distribution of clusters has DglusmmN J&Stor.

Statistically, one expects D2 Neuster=1/3. For the ACO catalogue out to 200h~'Mpc we get

cluster

D2

uster Veluster~0.2-0.3. The numbers are consistent with related dipole and monopole parameters

of the gravitational field due to clusters (Dg, Mg=>r"2cos#,> r~2) from Fig.1 of Scaramella et
al. (1991), when corrected for the fact that Dg, Mg are dominated by more nearby clusters. The
different spectral dependence, G(v), of thermal SZ can be used to reduce this term further. Thus
the contribution of this term to the dipole noise term in eq. ([[[) would be /Ci 4 < 10N, ;js/iiruK
(The thermal component dipole can also be seen to be small from extrapolation to (=1 from Figs.

1,2 in theoretical computation of the thermal SZ power spectrum by Atrio-Barandela & Miicket

1999, or Fig. 8 in Refreiger et al. 2000).
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3.3. Dipole cosmological components.
There will be two independent contributions to the dipole noise from cosmological terms: from
the residual dipole uncertainty and from the CMB fluctuations leaving a residual dipole when

evaluated over a finite number of points on the sky (Nejuster)-

The first contribution will come from the cosmological dipole which can be eliminated
from the CMB maps down to the 68% uncertainty of o4 (=7uK for FIRAS). With Njuster We
will approach this systematic component as o2[1 + O(NgL  )]. Because the correlation angle
of the temperature anisotropies is larger than the pixel size, this component can be further
decreased using a low-pass filter by performing the analysis on d(¥cluster)—0(¥ngh), Where #yg1, is the
neighboring pixel that does not contain another cluster and is Af,z, away from the original pixel.
The dipole noise will then be reduced to o4 (Abye1,/180°), while the noise variance will increase
by only 1/Nygp,. The second contribution will come from the cosmological temperature anisotropy
at each cluster location. The r.m.s. temperature anisotropy ocyp on the smallest scales probed
by MAP is model dependent, but could be of the same order of magnitude as the pixel noise or
even larger and it has the same frequency dependence as the kinematic SZ effect. Its contribution
is O'%MB /Neluster; and can be reduced by the low-pass filtering discussed above. If necessary, ocomp
can be reduced further with Wiener filtering (cf. Haenhelt & Tegmark 1996) designed to minimize

the difference between the filtered signal, dcnp, and the instrument noise, 7. We computed the

residual (Wiener-filtered) variance for two cold-dark-matter (CDM) models, the standard CDM
with Q=1, and the cosmological constant dominated CDM with 2=0.3 with ocomp=(57-93)uK
in the MAP bands. After the filtering with the noise multipoles of MAP the numbers reduce to

<%<r2>1/ 2 this component adds in quadrature to the instrument noise.

3.4. Instrument noise component.

If the instrument noise in the given band is r(v), its contribution to the dipole term in ([l]) is

<7‘2(1/)>/N_1 The MAP mission (http://map.gsfc.nasa.goy]) has 5 bands from 22 to 90 GHz and

cluster*

the r.m.s. noise at the end of two years should reach (r2(v))"/?=35uK per 0.3x0.3 deg pixel (the

MAP beams range from 0.93 to 0.2 deg and its total lifetime would be at least 27 months). The


http://map.gsfc.nasa.gov
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PLANCK satellite (http://astro.estec.esa.nl/Planck) has Low and High Frequency Instruments

(LFI and HFT). The LFT has four bands from 30 to 100 GHz and the beams from 33 to 10 arcmin.
Its noise at 4 uK at 30 GHZ to 12 pK at 100 GHz is significantly lower than that of MAP. The
six HFI bands cover 100 to 857 GHz and adding them would increase the signal-to-noise of the
measurement of bulk flows with Planck. Because the instrument noise dipole would be added in
quadrature to the cosmological component, this term is expected to be the dominant dipole noise

term for MAP instruments.

4. Results and strategies for measurement.
In order to apply this method we will take the available all-sky catalogs of imaged X-ray clusters
and compute the dipole of the CMB temperature field at the cluster locations in the expectation

that the noise terms will integrate down uncovering the bulk motion contribution to the dipole.

To measure the large-scale bulk flows by this method we need information on the location of
~(100-300) X-ray clusters with reasonably measured 7. A new all-sky catalog of imaged X-ray
clusters should be available soon (Bohringer et al. 1999) from the ROSAT observations. The
current catalog, known as BCS (Bright Cluster Sample), is ~90% complete in the Northern
hemisphere and |bga|>20 deg and contains 199 clusters with flux >4.45x1072erg/cm? /sec
(Ebeling et al. 1997). With the XLF parameters from Ebeling et al. (1997) a sphere of radius
100h~'Mpc would contain ~400 X-ray clusters with Lx,b0121042h_2erg/sec (or 1073L,), ~200
clusters with Lx>2.5x1073L, and ~100 clusters with Lx>5x10"3L,. For flux-limited X-ray
catalogs the numbers are similar: for flux limit of 10~ 2erg/cm?/sec in the [0.1-2.4] KeV band of
ROSAT, which is the flux limit of the NORA and REFLEX catalogs (Guzzo 2000), the number of

clusters within 1002 ~!Mpc would be ~200 or ~120 for F>2x10" 2erg/cm? /sec.

ROSAT has already completed a Southern hemisphere catalog of X-ray clusters, ROSAT-ESO
Flux-Limited X-ray cluster survey or REFLEX, (Bohringer et al. 1999, Guzzo et al. 2000). The
flux limit in the [0.1-2.4] KeV ROSAT band of the REFLEX survey is ~1.5x10~2erg/cm? /sec
corresponding to Lx (2-10KeV)~1.7x10*2h~2erg/sec at the distance of 100h~'Mpc. (Such clusters

have 7~9x10~* and are quite numerous even at that depth avoiding the problem of significant
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shot-noise from the rare and very high-7 clusters). The Northern hemisphere catalog of the
ROSAT X-ray clusters (NORA) should be completed shortly (Guzzo 2000). Altogether this would
result in approximately 1,500 X-ray clusters down to the limiting flux F~1x10712 erg/cm? /sec
in the [0.1-2.4] KeV band; out of these ~300 would lie within ~100h~!Mpc. In addition, there
are already 50 X-ray clusters within ~100~2~'Mpc from ASCA searches which have both central
temperature and electron density profile measured (Baumgartner et al 2000); this number is
expected to more than double within the next year or two (Mushotzky, private communication).
The ROSAT clusters can further be imaged very efficiently with XMM in order to obtain the

necessary catalog of X-ray clusters by the time the MAP mission is completed.

Our ability to determine a bulk flow of amplitude Vj,yk is limited by the instrumental noise

term. The signal-to-noise ratio, x, in such a measurement out to the depth D would be given by:

2
L5 L5

D 2 D 22 2
Cl,kinchlus er Vu 3 70 \I’Z D)D=*dD
X2 = Z fo ; ter _ To2 zzlchluster o Z fo (10) (D) (2)
The integral on the right-hand-side of eq. (B) accounts for the fact that the number of clusters
contributing to the reduction in the dipole from the instrument noise in a thin shell [D; D + dD],
where the beam dilutes the central optical depth by ¥;(D), is dNejuster=47[[ }j;’ n(Lx)dLx]D?dD.
For clusters selected from an absolute luminosity limited catalogs the term (7y)? in the integral on

the RHS of eq.(B)) would be independent of D; for flux-limited catalog the dependence on D would

come via LooxD?. In computing x we assumed the mean shape of ¥(D) plotted in Fig. 1.

If we want to determine just the amplitude of the bulk flow, we need the amplitude of
the dipole SZ kinematic component. If we are to determine the direction of the flow, we need
to measure all three dipole components: a1 1,a1,0,a1,—1. Thus to determine the amplitude of
the bulk velocity within a given D at the 95% c.l. we need x?=3.84; if we want to resolve all
three components of the dipole at the 95% c.l., we need x?>=7.81. The error bar on the dipole
components translates into an uncertainty on the measurement of the three components of the
velocity flow, i.e., on the bulk flow direction. If all dipole components have been measured with
the same precision, and the velocity of the flow is measured with an uncertainty oy, then the

direction of the flow will be determined with an angular precision dor = /20y / Vi
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Fig. 2a shows the smallest Vi that can be determined at 95% c.l. with MAP and
Planck/LFI data at D=50,100,150h"Mpc for a catalog with fixed lower bound of the bolometric
X-ray luminosity, Lo o The bulk velocity at 150h~'Mpc from Lauer & Postman (1994) is also
shown for comparison. There is only a weak dependence in x? on the (fixed) lower bound on the
X-ray luminosity of the cluster catalog. Thus this method gives a very realistic way to measure the
possible bulk flows on large scales or to significantly constrain their amplitude if the latter is small.
Fig. 2b shows x? vs the depth of the cluster catalog for the bulk flow of V4, =600 km/sec for
MAP (lower set of lines) and Planck/LFI parameters (upper set of lines). Since x?ocVi2,,, at the
95% c.l. the 2-year MAP data can probe in this way bulk flows with the amplitude as low as ~250
km/sec on scale of ~100h~!Mpc; with Planck data such bulk flows can be probed to even much
lower amplitudes and scales. Concerning the direction, MAP and Planck/LFI would determine &

la Lauer-Potsman bulk flow direction with a 95% c.l. error of 41° and 16°, respectively.

Finally, because the upcoming X-ray catalogs, such as the NORA/REFLEX catalog, extend
to significantly beyond 100h~'Mpc this method also would probe bulk flows on much larger scales.
Fig.2c shows the amplitude of the bulk flow that can be determined at 95% c.l. vs the depth
of the flux-limited X-ray cluster catalog. Bulk flows >100km/sec on scale ~300h~'Mpc can be
probed with this method with MAP data; with Planck/LFT this reduces to ~30km/sec. If MAP
operates longer than 2 years, this number would decrease OCt(:plo/rition‘ If both LFI and HFI Planck
channels are combined the bulk flows on large scales can be probed to even lower limits than

with the Planck/LFI alone; e.g. on scale of ~ 100h~!Mpc the amplitude of the bulk flows can be

determined at 95% c.l. down to ~30km/sec and on scale of ~300h~*Mpc to ~15-20km /sec.
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FIGURE CAPTIONS

Fig. 1: The dilution factor ¥(D) vs the depth D for two MAP bands. Solid lines are for
Gaussian beam corresponding to Band 1 (22 GHz, FWHM = 0.93 deg). Dashed lines are for Band
5 (90 GHz, FWHM = 0.21 deg). Thick lines correspond to the cluster profile averaged over 37
X-ray clusters as described in the main text. Thin lines correspond to the r.m.s. value of ¥(D)

over the same sample.

Fig. 2: (a) The amplitude of Vi, that can be determined at 95% c.l. (x? = 3.84) is plotted
vs the lower limit on the bolometric X-ray luminosity, Loye. Thin lines correspond to MAP
and thick lines to Planck/LFI data parameters. Solid lines correspond to X-ray clusters out to
D = 50,100, 150h~*Mpc from top to bottom respectively. From top to bottom, dashed lines show
the value of Vi when the three components of the dipole can be determined at the 95% c.l. at
D = 50,100, 150h~! Mpc, respectively. Open square with error bar shows the amplitude of the bulk
flow at 150h~ 1 Mpc from Lauer & Postman (1994). (b) Solid lines plot x? from eq. (f) vs the depth
of the X-ray cluster catalog, D, with a cutoff on the X-ray luminosity of Lo/L, = (1,2,5) x 1073
from top to bottom respectively. Dotted lines correspond to flux-limited X-ray cluster catalog with
the [0.1-2.4] KeV flux > (1,2) x 10~ '2erg/cm?/sec. Lower set of lines is for MAP data and the
upper set of lines is for the Planck/LFI instrument parameters. In the latter case over the range
of the plot the two lines for the [0.1-2.4] KeV flux > (1,2) x 10~ *2erg/cm? /sec coincide with each
other and with the Lx /L. > 1073 case. Thick solid horizontal line corresponds to x? = 3.84, when
the amplitude of the bulk flow can be determined at 95% confidence level; thick dashed horizontal
line corresponds to y? = 7.81, when the three components of the dipole can be determined at
95% confidence level. (¢) The amplitude of the bulk flow that can be determined at 95.4% c.1.
is plotted vs the depth of the flux-limited X-ray cluster catalog. Solid lines correspond to the
MAP data, thin dotted lines to Planck/LFI and thick solid lines to Planck/LFI and Planck/HFI
together. Two sets of lines correspond to X-ray flux > (1,2) x 10~!2erg/cm?/sec from top to

bottom respectively.
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